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Abstract. We classify the finite groups G such that the finitely presented group U(ZG)
has the good property. Furthermore we obtain several characterisations in terms of
properties of the simple factors of U(QG). Ring theoretically it is shown that it coincides
with having only low-dimensional QG-components (i.e. at most 1 × 1 and exceptional
2×2 components). In particular, we solve a new instance of the virtual structure problem,
generalising the free-by-free work. Cohomologically this happens if and only if all simple
factors have virtual cohomological dimension a divisor of 4. Geometrically it is proven
to be equivalent to the components acting discontinuously on H5. The latter properties
are investigated for general lattices in semisimple algebraic Q-groups of (inner) type A
where in general the properties are no longer equivalent.
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TO DO list
Het volgende is een lijst van precieze te typen zaken die we al hebben geïdentificeerd (maar
niet de heel kleine to do’s die vaak in vorm van marginpar in het document staan):

(1) Make final form of the table for proof theorem 2.1 (Doryan maakt, Geof bepaalt
wat erin)

(2) Write the preliminaries on SSP and exceptional components (Geof)
(3) Afwerken bewijs dat (Mexc) overgaat naar subnormale deelgroepen (Robynn)
(4) Karakter theorie sectie afwerken, i.e. schrijf een equivalent van proposition 2.9 voor

het geval dat Q abels is en cd(G) = {1, 2, 4} (Wie?)
(5) Restricties op A (elementary abelian 3 group) en index kernel (Robynn)
(6) Uitleg rond Block VSP en context (Geof)
(7) Bewijs proposition 3.3 (Geof)
(8) Bewijs proposition 3.5 (welke simpele hebben vcd 4) (Robynn) + afwerken van het

bewijs (Robynn en Doryan)
(9) Bewijs theorem 3.7 nu in finale vorm zetten (Geof)

(10) Bewijs Proposition 3.10 (Robynn)
(11) Wat the Zassenhaus property for semisimple algebra is, i.e. sectie 5.2 (Geof)
(12) bewijs proposition 5.1 (wie?)

De volgende zijn to do’s die nog meer denkwerk zullen vereisen:
(i) Nadenken over verdere restricties in het niet-nilpotent geval
(ii) Bewijs vinden voor het nilpotent geval van Theorem 2.6
(iii) Beperkingen op de vorm van nilpotente groepen met (Mexc) vinden. Meer precies

probeer een variant te vinden van Lemma 5.1.(6), Lemma 5.2.(3) en lemma 6.1 in de
Free-by-Free paper.

(iv) Theorem 3.12 (band tussen (Mexc) en Discreet in SL4(C)) zien wat we net kunnen en
willen zeggen

(v) De juiste geometric groep theoretische eigenschappen vinden ! (i.e. sectie 4)
(vi) Aantonen dat de exceptionele 2 × 2 de strong zassenhaus hebben.

1. Introduction

Blabla Kleinert

The Virtual structure problem for low degree.

Question 1.1 (Virtual Structure Problem). Let G be a class of groups. Classify the finite
groups G such that U(ZG) has a subgroup of finite index lying in G.

The aim of this article is to solve the above for the following class of groups

Gam = {Zn ×
∏
i∈I

Ai ⋆Ci Bi | [Ai : Ci], [Bi : Ci] are finite but not 1}.

The main bulk of the paper will be about classifying the finite groups G such that the
only non-division algebra components of QG are exceptional 2 × 2 components. Following
result completes a line of research started more than 20 years ago with the papers ... .

Theorem 1.2. Let G be a finite group. The following are equivalent
(1) All simple components Mn(D), with n ≥ 2, of QG are exceptional components of

type II, i.e. n = 2 and D isomorphic to {Q,Q(
√

−d),
(

−a,−b
Q

)
},

(2) vcd(SL1(ZGe)) ∈ {0, 1, 2, 4} for all e ∈ PCI(QG)
(3) G is a quotient of one of the following families of groups : blabla

Moreover, in that case SL1(ZGe) is discrete subgroup of SL4(C) for all e ∈ PCI(QG). The
converse holds iff to complete

Remark 1.3. • The fourth condition in Theorem 1.2 can also be equivalently stated
that SL1(ZGe) acts discontinuously on H5 or H3 for all e ∈ PCI(QG).Or PSL?
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• one can be more precise in the actual components that appear. Namely put final
list

Denote by C(QG) the isomorphism types of the simple components of QG. Next, we
record a list of geometric group theoretical properties of U(ZG) that is equivalent to C(QG) Is het eerder V (ZG)?

to be as in Theorem 1.2.

Theorem 1.4. Let G be a finite group. The following are equivalent
(1) U(ZG) is virtually-Gam

(2) U(ZG) is good
(3) Stuff Angel-Zalesski paper.

As a corollary we get a statement which appeared without proof in ??. For this recall the
following two classes of groups

Gpab = {
∏

i

Ai,1 ⋆ · · · ⋆ Ai,ti
| Ai,j are finitely generated abelian }

and
G ̸=1 := {

∏
i

Γi | e(Γi) ̸= 1}.

The following was announced without proof in [??].

Corollary 1.5. The following classes are equal
{G finite s.t. U(ZG) is virtually-G̸=1} = {G finite s.t. U(ZG) is virtually-Gpab}.

Theorem 1.2 and its predecessors suggest to investigate the following ring theoretical
variant of the virtual structure problem for U(ZG). put the statement that is now later
in the paper

How to call the problem?
Problem. Let P be a set of isomorphism classes of finite dimensional simple algebras over Q.
Classify all finite groups G such that C(QG) ⊆ P.

The blockwise Zassenhaus property. In the 70’s Zassenhaus formulated a set of
conjectures which had to clarify the origin of the conjectural isomorphism between two
group bases. The strongest of these, called the Third Zassenhaus conjecture, asserted that
every finite subgroup H of V (ZG) is conjugated over QG to a subgroup of G. This has
been disproven in [??]. It nevertheless an important problem to determine which classes of
groups satisfy the property asserted by the conjecture.

We define the Zassenhaus property, with respect to a type of subgroups, for any semisimple
algebra. Subsequently we consider what we call the blockwise Zassenhaus property. For this
no counterexample is yet known and in this paper we prove the following.

Theorem 1.6. Let G be a finite group and e ∈ PCI(QG) such that QGe is a field, totally
definite quaternion algebra or an exceptional simple algebra. Then (QG)e satisfy the Third
Zassenhaus property.

Corollary 1.7. If G is a finite group such that QG XX. Then it satisfies the blockwise
Zassenhaus property.

To finish, we would like to advertise the study of the block-wise version of the Isomor-
phism problem and the Zassenhaus conjectures. It can namely be verified that the known
counterexamples to those conjectures are not counterexamples to the block-wise version!

Acknowledgment. We thank Oberwolfach research in pairs (number) blabla. We are
grateful to Angel del Río for sharing with us a proof of Lemma 5.2.

Conventions and notations. Throughout the full article G will denote a finite group. All
orders will be understood to be Z-orders. We also use the following notations:

• PCI(FG) for the set of primitive central idempotents of FG
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• πe : U(FG) ↠ FGe projection to a simple component
• C(FG) = {FGe | e ∈ PCI(FG)} for the set of isomorphism types of the simple

components of FG.
• Degree and index of a central simple algebra is blabla
• By ϕ(n) we denote Euler’s phi function.

2. Finite groups with only exceptional higher simple components

DEFINE exceptional component + explain terminology (also which 1 × 1 are ok).

2.1. Preliminaries on describing simple component. Here put minimal necessary
background on SSP theory. Hereby add as citation some of the main works on it (at least
those containing the actual results we borrow from the book)

2.2. Restrictions on Division algebras and the Group. Now consider the following
condition on G in terms of QG:

(Mexc) all QGe ∼= Mn(D), with n ≥ 2, are of the form M2(Q(
√

−d)) or M2(
(

−a,−b
Q

)
)

with a, b, d ∈ N.
We will also use the notation (Mexc)+ to mean the stronger property that all non-divisionmaybe avoid this notation??

matrix components are of the form M2(Q(
√

−d)) with d ∈ N. The groups with (Mexc)+

and the extra assumption that the division components are all totally definite quaternion
algebras were classified in [15].

Description components and first properties. In case of property (Mexc) however also excep-
tional division algebra components can arise as shown by the following result. Nevertheless
the possible division algebra that can arise as QGe are still restricted.

Theorem 2.1. Let G be a finite group having property (Mexc). Then
(1) the 1 × 1 components of QG are either fields or quaternion algebras. More precisely,

the non-commutative possibilities are1:

{
(

−1, −1
Q(ζm)

)
,

(
−1, −3

Q

)
,

(
ζ2t , −3
Q(ζ2t)

)
,

(
−1, −1
Q(

√
2)

)
,

(
−1, −1
Q(

√
3)

)
| m ∈ 2N + 1, t ∈ N≥3}

(2) The only exceptional type II components are

{M2(Q(
√

−d)), M2(
(

−1, −1
Q

)
), M2(

(
−1, −3

Q

)
) | d = 0, 1, 2, 3}.

Notatie veranderen, geen
type II (3) If QGe is exceptional type II, then π(Ge) ⊆ {2, 3}.

(4) G has2 an abelian normal subgroup A with exp(G/A) | 4.

In particular, G is metabelian with cd(G) ⊆ {1, 2, 4}. Furthermore, deg(QGe) | 4 for every
e ∈ PCI(QG).

say that later some parts will be made stronger.

Remark 2.2. In the proof we will obtain that C3 ⋊ C2n , where the action is by inversion,
the rational group algebra has all non-division simple components of the form M2(Q) and
M2(Q(i)). Furthermore it has a division component of the form

(
ζ2n−1 ,−3
Q(ζ2n−1 )

)
. Hence it gives

an example of a group satisfying (Mexc)+ but not the stronger property considered in [15].

The proof of Theorem 2.1 will go through understanding the quotient groups Ge for
e ∈ PCI(QG).

1Note that the only exceptional component of type II not appearing is M2(H5).
2The proof will furthermore prove that [Ge : Ae] | 4 for every e ∈ PCI(QG).
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Lemma 2.3. For any finite group G, normal subgroup N ⩽ G and e ∈ PCI(QG) holds:

C(Q[G/N ]) ⊆ C(QG) and C(Q[Ge]) ⊆ C(QG).

Consequently,
C(QG) =

⋃
e∈PCI(QG)

C(Q[Ge]).

In particular, property (Mexc) is inherited by quotients.

Proof. The first claim follows from the fact that Q[G/N ] is a semisimple subalgebra of QG.
Indeed, it is immediately semisimple (since it is a group algebra), and a straightforward
calculation shows that Q[G/N ] ∼= QGÑ ≤ QG with Ñ the central idempotent 1

|N |

∑
n∈N

n.

The second inclusion follows from the first since the group Ge is an epimorphic image of G.
The rest is now also a direct consequence as every simple component of QG corresponds to
a primitive central idempotent e ∈ PCI(QG). □

Using Lemma 2.3, the proof of Theorem 2.1 reduces to a study of the fixed-point free
groups classified by Amitsur [1] and the finite subgroups of exceptional components classified
in [4]. In fact the conclusion of Theorem 2.1 already holds under the weaker condition that
each Ge is embedded in a division algebra or an exceptional type II algebra.

Proof of Theorem 2.1. For a group G having (Mexc), the set PCI(QG) naturally decomposes
into PCI1 := {e | QGe ∼= D} and PCI2 := {e | QGe ∼= M2(D)} where D always signifies a
rational division algebra. Hence, with Lemma 2.3 in mind, for the first statement it suffices
to analyse the components possibly appearing in Q[Ge] for e ∈ PCI1 or PCI2.

Let’s start with PCI2. The finite subgroups G of GL2(Q(
√

−d)) or GL2(
(

−a,−b
Q

)
) with

a, b, d ∈ N with the property that spanQ(G) is the respective M2(·) have been classified3 in
[4, Theorem 3.7]. This classification consists of 55 groups and in particular the groups Ge
for e ∈ PCI2 must be among these. One can compute the simple components for example in
GAP using the Wedderga package, see table ?? in Appendix ?? for the result. This would Still to add the table!

moreover show that for groups Ge with e ∈ PCI2 the property (Mexc) is equivalent to the
weaker property that each non-division component has reduced degree 2. A case-by-case
verification also shows that each of these groups Ge contain an abelian normal subgroup
of index a divisor of 4. Furthermore, as written in the table the only 1 × 1 components
appearing are

Q,Q(ζ3),Q(i),Q(ζ8),Q(ζ12),
(

−1, −1
Q

)
,

(
−1, −3

Q

)
,

(
−1, −1
Q(

√
2)

)
.

Inspection of the table also shows that all other statements hold for such groups.
Next we consider the case that e ∈ PCI1 for which a similar reasoning applies. Indeed, the

finite subgroups (such as Ge for e ∈ PCI1) of rational division algebras have been classified
by Amitsur in [1]. We will use the rephrasing from [21, Theorem 2.1.4] which asserts that
they are:

a) a Z-group, i.e. a subgroup of a rational division algebra with cyclic Sylow-subgroups.
b) i) the binary octahedral group O∗ of order 48:

{±1, ±i, ±j, ±ij,
±1 ± i ± j ± ij

2 } ∪ {±a ± b√
2

| a, b ∈ {1, i, j, ij}}.

ii) Cm ⋊Q, where m is odd, Q is quaternion of order 2t for some t ≥ 3, an element
of order 2t−1 centralizes Cm and an element of order 4 inverts Cm.

iii) M × Q8, with M a Z-group of odd order m and the (multiplicative) order of 2
mod m is odd.

3In [4, Table 2] a group was missing, see [3, Appendix A] for a complete list.
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iv) M × SL2(F3), where M is a Z-group of order m coprime to 6 and the (multi-
plicative) order of 2 mod m is odd.

c) SL2(F5).
Neither O∗, SL2(F3) nor SL2(F5) have (Mexc). Indeed using4 the Wedderga package in

Gap one learns that M3(Q) is a simple component over Q of O∗ ∼= SU2(F3) and SL2(F3)
and M5(Q) for SL2(F5). Consequently, they can not be epimorphic images of the group G.
Hence the cases b) i), iv) and c) do not appear as groups Ge for e ∈ PCI1.

The groups in b) ii) are actually dicyclic groups of order 2tm, i.e. Dic4n with n = 2t−2m
and t ≥ 3. The case of odd n will be case (b) in the family of Z-groups. Therefore consider
a general dicyclic group:

Dic4n = ⟨a, b | a2n = 1, b2 = an, b−1ab = a−1⟩.

Being a metabelian group its Strong Shoda pairs are described by [13, Theorem 3.5.12]
which we apply now. Note that the commutator subgroup Dic′

4n = ⟨a2⟩ and ⟨a⟩ is the
maximal abelian containing it. For any (H, K) SSP holds that ⟨a⟩ ⊆ H. In other words
H = ⟨a⟩ or Dic4n. If H = Dic4n then the simple component associated to (H, K) is a field,
[12, Lemma 2.4]. Via [13, Theorem 3.5.12] it is a direct verification that for d | 2n the
tuple (⟨a⟩, ⟨ad⟩) is a SSP if and only if d ̸= 1, 2. Note that K is normal in Dic4n, hence the
associated primitive central idempotent is ϵ(⟨a⟩, ⟨ad⟩). Now, in [13, Example 3.5.7], it is
noted that

(2.1) QDic4nϵ(⟨a⟩, ⟨ad⟩) ∼= M2(Q(ℜ(ζd))) if d | n and d ∤ 2

where ζd denotes a complex primitive d-th root of unity. Since ℜ(ζd) = cos 2π
d ∈ R \ Q,

Niven’s theorem tells that M2(Q(ℜ(ζd))) is exceptional5 if and only if φ(d) ≤ 2. The latter is
equivalent to d ∈ {1, 2, 3, 4, 6}. In conclusion if Dic4n has (Mexc), then it must be isomorphic
to Q8, Q16, C3 ⋊ Q8 or C3 ⋊ C4. The first three groups are in the family b) ii). Moreover
these groups indeed have (Mexc). Precisely:

C(QQ8) = {Q,
(

−1,−1
Q

)
}, C(QQ16) = {Q,

(
−1,−1
Q(

√
2)

)
, M2(Q)} and

C(Q[C3 ⋊ Q8]) = {Q,
(

−1,−1
Q

)
,
(

−1,−1
Q(

√
3)

)
, M2(Q)}

Before we consider case b) iii), we will discuss a), the Z-groups.
The Z-groups themselves have also been classified, see [21, Theorem 2.1.5]. They are the

following:
a) cyclic.
b) Cm ⋊ C4, where m is odd and C4 acts by inversion.
c) G0 × G1 × . . . × Gs, with s ≥ 1, the orders of the groups Gi are coprime and G0 is

the only cyclic subgroup amongst them. Each of the Gi, for 1 ≤ i ≤ s, is of the form

Cpa ⋊
(

C
q

b1
1

× . . . × Cqbr
r

)
,

for p, q1, . . . , qr distinct primes. Moreover, each of the groups Cpa ⋊C
q

bj
j

is non-cyclic
(i.e. if Cqαj denotes the kernel of the action of C

q
bj
j

on Cpa , then αj ̸= bj) and
satisfies the following properties:
(i) qjo

q
αj
j

(p) ∤ o |G|
|Gi|

(p).

4The SmallGroup ID of the three groups are respectively [48,28], [24,3] and [120,5]
5Recall that [Q(ℜ(ζd)) : Q] = φ(d)/2. In particular, in contrast to the case e ∈ PCI2, it can happen that

all non-division components are exceptional without the group having (Mexc). Even more it can happen
that all non-division components are of the form M2(F ) with F a quadratic extension of Q. As shown by
(2.1) this namely holds for Dic4n with n = 5, 10, 8, 12.
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(ii) one of the following is true:
• qj = 2, p ≡ −1 mod 4, and αj = 1,

• qj = 2, p ≡ −1 mod 4, and 2αj+1 ∤ p2 − 1,

• qj = 2, p ≡ 1 mod 4, and 2αj+1 ∤ p − 1,

• qj > 2, and q
αj+1
j ∤ p − 1.

It is clear the cyclic groups have (Mexc) since QCn is abelian. Moreover, by the well
known theorem of Perlis-Walker, C(QCn) = {Q(ζd) | d divides n}.

Case b), i.e Dic4n with n odd, was already handled via (2.1). The conclusion was that
the only possible (non-abelian) such group having (Mexc) is C3 ⋊ C4. In this case

C(Q[C3 ⋊ C4])) = {Q,Q(i),
(

−1, −3
Q

)
, M2(Q)}.

Next consider case c). We first show that (Mexc) enforces 2 | |Gi|, for 1 ≤ i ≤ s and
hence s = 1 by the coprime condition. For this consider Ai =

∏s
j=1 Cqαj , the kernel of the

action. Then B := Gi/Ai
∼= Cpa ⋊ C

q
k1
1 .··· .qks

s
where kj = bj − αj > 0 and the action is

non-trivial and faithful. Denote B = ⟨x⟩⋊ ⟨y⟩. By Lemma 2.3 the group B also has (Mexc) .
Note that Cpa = ⟨x⟩ is a maximal abelian subgroup of B containing B′. Now using [13,
Theorem 3.5.12] it is a direct verification that (H, K) = (⟨x⟩, 1) is a SSP of B. Moreover
QBe(G, ⟨x⟩, 1) ∼= Q(ζo(x)) ∗ ⟨y⟩ for some explicit crossing (see [13, Remark 3.5.6]) which
imply that the component is non-division. Now using [10, Lemma 3.4], we compute that

dimQ QBe(G, ⟨x⟩, 1) = [G : ⟨x⟩]ϕ(o(x)) = qk1
1 . · · · .qks

s pa−1(p − 1).
On the other dimQ QBe(G, ⟨x⟩, 1) | 16 as B has (Mexc) . Combining both with the fact that p
and the qi are different primes, we obtain that s = 1, q1 = 2 and pa = 3. Thus B ∼= C3⋊C2k1 .
Furthermore, as the action is faithful, we obtain that k1 = 1, i.e. B ∼= C3 ⋊ C2 where the
action is by inversion. Consequently G1 ∼= C3 ⋊ C2b1 with the action being inversion (as
α1 = b1 − 1).

It remains to consider G0×G1. As π(G1) = {2, 3} we have that G0 ∼= Cm with m relatively
prime to 2 and 3. But Q[G0 ×G1] contains as a simple component Q(ζm)⊗Q M2(Q(

√
−d)) ∼=

M2(Q(ζm)) ⊕ M2(Q(ζm,
√

−d)) with d ∈ N (potentially zero). As G0 × G1 is assumed to
have (Mexc) this implies that [Q(ζm) : Q] ≤ 2. The latter happens exactly when m | 6,
which by the restriction on m ony happens for m = 1. Thus in conclusion6 the only groups
of

type c) with (Mexc) are those of the form C3 ⋊ C2n with the action being by inversion.

For such groups, using [13, Theorem 3.5.12], one can verify that for n ≥ 4

C(Q[C3⋊C2n ]) = {Q(ζ2ℓ),
(

−1, −3
Q

)
,

(
ζ2t , −3
Q(ζ2t)

)
, M2(Q), M2(Q(i)) | 1 ≤ ℓ ≤ n, 3 ≤ t ≤ n−1}.

The last case to handle is b) iii), i.e. M × Q8 with M a Z-group of odd order m and
also the multiplicative order of 2 modulo m is odd. By Lemma 2.3 also M has (Mexc), but
looking at the possible such Z-groups of odd order we see that7 M must be cyclic. Now
recall that C(QQ8) = {Q,

(
−1,−1

Q

)
}. If M is cyclic, then C(Q[M × Q8]) = {Q(ζd),

(
−1,−1
Q(ζd)

)
|

d divides m}. As m is odd all the components are division algebras, a conclusion that also Klopt dit? Voor d = 3 splits
het bv denk ikdirectly would have followed from [20]. In particular the groups

M × Q8 with m and om(2) odd have (Mexc).

6To reach this conclusion we only used that every non-division component is of the form M2(D) with
[Z(D) = Q] ≤ 2.

7Also this conclusion only requires that every non-division component is of the form M2(D) with
[Z(D) = Q] ≤ 2 and not the full strength of (Mexc).
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To summarise, with the analysis above we have shown part (1) and (2) from the statement
by describing

∏
e∈PCI(QG) Ge. Note that all allowed groups Ge have been highlighted in

the proof. We see that they all have an abelian normal subgroup Ae with [Ge : Ae] | 4.
Hence A = G ∩

∏
e∈PCI(QG) Ae is an abelian normal subgroup of G with exp(G/A) | 4.

Consequently, G is metabelian.
Finally, for the simple algebras Mn(D) allowed by (Mexc), we see that M2(D) ⊗Q C is

isomorphic to M2(C) ⊕ M2(C) or M4(C). By the first part if QGe ∼= D, then D ⊗Z(D) C is
either C or M2(C). So indeed cd(G) ⊆ {1, 2, 4}. □

Determine where the SSP lemma should come (i think characterisation section)
The aim of the remaining of the section is to obtain more precise descriptions of the groups
having (Mexc) . To start we study PCI(QG). Recall that G is called strongly monomial if
each primitive central idempotent e of QG comes from a SSP, i.e. e = e(G, H, K) for some
SSP (H, K). For example all abelian-by-supersolvable groups are strongly monomial [13,
Theorem 3.5.10]. In particular, by Theorem 2.1, (Mexc) implies strongly monomial.

Lemma 2.4. Suppose G has (Mexc) and let (H, K) be a SSP of G with8 H ̸= G. Denote
e = e(G, H, K) the associated primitive central idempotent. Then [G : H] | 4. Furthermore
the following holds:Say something about which

of the cases give allowed com-
ponents. Maybe [H : K] = 8
or 12 not possible?

(1) if NG(K) = H, then9 ϕ([H : K]) = dimQ Z(QGe) ≤ 2 and [G : H] = 2,
(2) if H ⪇ NG(K) ⪇ G, then [H : K] ∈ {3, 4, 6} and [G : H] = 4,
(3) if NG(K) = G and QGe is not a division algebra, then

ϕ([H : K]) = 2 dimQ Z(QGe) ∈ {2, 4} and [H : K] | 8 or 12

if [G : H] = 2 and [H : K] = 8 or 12 if [G : H] = 4.

Proof. In general QGe(G, H, K) ∼= M[G:NG(K)](Q(ζ[H:K]) ∗ NG(K)/H) for some explicit
crossing. Furthermore deg(QGe(G, H, K)) = [G : H] where ’deg’ denotes the degree of
the central simple algebra QGe(G, H, K)) (i.e. deg(A) =

√
n if A ⊗Z(A) C ∼= Mn(C)).

It follows from the description of the possible simple components in Theorem 2.1 that
[G : H] = deg(QGe(G, H, K))) | 4.

For the other parts of the statement we make an analysis of the various cases. We will
denote N := NG(K).

If N = H, then QGe ∼= M[G:H](Q(ζ[H:K])). As G has (Mexc) and G ̸= H this means that
[G : H] = 2 and [Q(ζ[H:K]) : Q] ≤ 2. In other words, dimQ QGe = [Q(ζ[H:K]) : Q] = ϕ([H :
K]) ≤ 2, as stated.

Now suppose that H ⪇ N ⪇ G. As [G : H] | 4, the condition entails that [G : N ] = 2 =
[N : H]. Consequently QGe ∼= M2(

(
−a,−b

Q

)
) for some a, b ∈ N0, as it is the only simple

component of degree 4 in case G has (Mexc). Using the dimension formula we obtain that

16 = dimQ QGe = 4.2.ϕ([H : K]).

Thus ϕ([H : K]) = 2 and hence [H : K] = 3, 4 or 6.
Finally suppose that K is normal in G. Then QGe ∼= Q(ζ[H:K]) ∗ G/H. Hence if it is not

a division algebra, then it is an exceptional algebra of type II. First consider the case that
[G : H] = 2 and so QGe ∼= M2(Q(

√
−d)) with d ∈ N. Then 4 dimQ Z(QGe) = dimQ QGe =

2.1.ϕ([H : K]), so indeed ϕ([H : K]) = 2 dimQ Z(QGe) ∈ {2, 4}. It remains to consider
the case that [G : H] = 4 and so QGe ∼= M2(

(
−a,−b

Q

)
) for some a, b ∈ N0. The dimension

formula now gives 16 = 4.1.ϕ([H : K]), i.e. ϕ([H : K]) = 4.
Now ϕ([H : K]) = 4 is equivalent to [H : K] ∈ {5, 8, 10, 12}. We claim that 5 ∤ [H : K].

Indeed, as ker(φe : G → Ge) = coreG(K) ≤ K one has that [H : K] = [φe(H) : φe(K)].

8The condition H = G is equivalent to G′ ≤ K which in turn is equivalent to that QGe(G, H, K) is
non-commutative, [12, Lemma 2.4].

9In other words [H : K] divides 4 or 6 if NG(K) = H and it divides 8 or 12 if NG(K) = G.



THE VIRTUAL STRUCTURE PROBLEM FOR HIGHER MODULAR GROUPS 9

Thanks to Theorem 2.1, π(G) ⊆ {2, 3} and thus 5 ∤ [φe(H) : φe(K)], yielding the claim. In
conclusion, [H : K] = 8 or 12 when ϕ([H : K]) = 4, finishing the proof. □

———————–
For the next technical result we consider the set

E := {e ∈ PCI(QG) | QGe not exceptional type I }.

Lemma 2.5. Suppose G has (Mexc) and let f :=
∑

e∈E e. Then G ∼= A ⋊ Q with A an
abelian group of odd order and Q a 2-group. Furthermore,

(1) exp(Gf) | ... and exp(Z(Gf)) | ...
(2) Z(G) ∩ G′ = ...
(3) if G non-nilpotent then exp(G2) | 8 and if A ≠ 1, then... (see lemma 6.1 in

free-by-free)

Note that f = 1 if E = PCI(QG), i.e. when QG has no simple component which is
a division algebra different of a field or a totally definite quaternion algebra. This is for
example the case when G is a cut group [3, Proposition 6.12]. Recall that a group is called
cut if Z(U(ZG)) is finite. It was shown in [??] that cut groups are exactly the inverse
semi-rational groups.

Proof. To DO and Determine what to include/poursuivre... □

———————–

Some Nice index 2 Subgroup. All finite groups such that SL1(QGe) is a discrete subgroup
of SL2(C) have been classified in [15]. In loc.cit. presentations for such groups were even
given. Furthermore, they showed that the aforementioned property is equivalent to saying
that all simple components of QG are either fields, totally definite quaternion algebras or of
the form M2(Q(

√
−d)) with d ≥ 0. The following result shows that groups with (Mexc) are

index 2 overgroups of the groups classified in [15].

Theorem 2.6. If QG has (Mexc) then G has an index two subgroup H whose non-division
components are all of the form M2(Q(

√
−d)) with d ≥ 0. Is het waar dat H ook

effectief minstens 1 niet-
division component heeft?
I.e. hebben we cd(H) =
{1, 2}?

Example 2.7. The converse of Theorem 2.6 is not true in general. For example consider the
following extraspecial group of order 25 (whose SmallGroup ID is [32,49]):

D8 ◦ D8 := ⟨a, b, c, d | a4 = b2 = c2 = d2 = 1, c2 = a2, ab = a−1, cd = a2c,

[a, c] = [a, d] = [b, c] = [b, d] = 1⟩.

It can be verified that C(Q[D8 ◦ D8]) = {Q, M4(Q)} (e.g. via the well-known description of
its complex irreducible representations). On the other, e.g. to be proven via a manual check
(via GAP), all the 2-groups until order 16, except D16, have only matrix components of the
form M2(Q(

√
−d)) with d ≥ 0.

To prove Theorem 2.6, we first need the following result of independent interest which
will also be instrumental in Section 2.4.

Lemma 2.8. If QG has (Mexc), then so does QH, for any subnormal subgroup H of G.

Proof. It suffices to prove that (Mexc) is inherited by any normal subgroup H of G, since
then a recursive argument finishes the proof.

Consider a simple QH-module N , and decompose the induced QG-module IndG
H(N) =

M1 ⊕ . . . ⊕ Mt into simple QG-modules. Then N is a direct summand of the restriction
ResG

H IndG
H(N), and hence of one of the QH-modules ResG

H(Mi). Therefore, in order to
describe the simple QH-components of a QG-module, it suffices to investigate the modules
ResG

H(M) with M a simple QG-module. In the case at hand, we are interested in describing
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the simple QH-components of the QH-module ResG
H(QG) obtained from the regular QG-

module. The simple QG-components M of QG are columns of matrix algebras Mn(D), and
since QG has (Mexc) by assumption, the form of Mn(D) is described by Theorem 2.1.

We recall Clifford’s theorem, [cite], which, since H is normal in G, implies that M
decomposes as a QH-module into a direct sum

ResG
H(M) ≃ N1 ⊕ · · · ⊕ Nr

of simple QH-modules Ni which are all in the same G-orbit. Thus for all 1 ≤ i, j ≤ r,
Ni = g · Nj for some g ∈ G. In particular all Ni have the same Q-dimension. Each Ni is a
column of a matrix algebra Mni(Di), with Mni(Di) a component of QH. We investigate the
Ni appearing in the above decomposition of M , for each possible simple QG-component M .

To be continued □

Proof of Theorem 2.6. By Theorem 2.1, G has character degrees cd(G) ⊆ {1, 2, 4}. If G
is non-nilpotent, then by [8, Theorem 1.1], either G has a subgroup H of index 2 such
that cd(H) ⊆ {1, 2}, or G/Z(G) ∼= (C3 ⋊ C2) ≀ C2. But a calculation using GAP, shows
immediately that Q((C3 ⋊ C2) ≀ C2) does not have the (Mexc) property, and in particular
this would imply by Lemma 2.3 that QG does not have (Mexc), which is a contradiction
with the assumption. Hence G has a subgroup H of index two with cd(H) ⊆ {1, 2}. Now
since H is normal, Lemma 2.8 implies that QH has (Mexc). If QH had a component of the
form M2(

(
−a,−b

Q

)
), this would imply10 that 4 ∈ cd(H), a contradiction. Hence QH has the

desired components.
Suppose now that G is nilpotent. □

2.3. Groups with low character degrees. This section and the next aim to give a precise
description of the groups satisfying (Mexc). By Theorem 2.1 we should first consider the
more general class of groups with the character degrees of the irreducible complex characters
all divisors of 4. We denote by cd(G) the set of character degrees of irreducible complex
representations of G. In this section we focus on the groups G with cd(G) = {1, 4}.

More generally, whenever cd(G) ⊆ {1, pj , pk} then G is solvable of derived length at most
3 [9, Theorem 12.15]. Furthermore, (χ(1), q) = 1 for any prime q different from p and any
χ ∈ IrrC(G). This allows to apply the Ito-Michler theorem [9, Corollary 12.34] which in this
case yields that
(2.2) G ∼= A ⋊ Q,

where A is an abelian p′-subgroup and Q a Sylow p-subgroup of G. More precisely, A is the
direct product of all Sylow q-subgroups of G, for all q ̸= p, which are normal and abelian
under the above assumption on cd(G).

Using character theory and [8], the following results will give further restrictions on the
decomposition (eq. (2.2)) in the case that | cd(G)| = 2.

Proposition 2.9. Let G be a non-nilpotent group such that cd(G) = {1, pk}, with k > 1.
Then the Fitting subgroup F (G) of G is the unique maximal abelian subgroup of index pk.
Furthermore, all Sylow subgroups of G are abelian, and G decomposes as a semidirect product

G ∼= N ⋊ C,

with N an abelian subgroup of F (G) and C a 2-generated p-group ⟨x, y⟩, with x acting with
order pk, and y central in G. Conversely, a group G as above with | cd(G)| = 2 must have
cd(G) = {1, pk}.

Remark 2.10. The proof of Proposition 2.9 will also yield extra restrictions on the structure
of G. For example F (G) = CG(A) ∼= Z(G) × [G, G] by (2.3) and (2.4). Additionally,
denoting C = ⟨x, y⟩ and using [8, Theorem 3.1.(iii)], one can prove that the action of xi, for
1 ≤ i ≤ pk, on [G, G] is free.

10Add justification...
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Proof of Proposition 2.9. As noticed earlier G has the form (2.2) with A and Q as described
there. If Q is non-abelian, then [9, Exercise 12.6] implies that G is nilpotent, which is in
contradiction with the hypothesis. Hence Q is abelian.

Now we show that the Fitting subgroup is the centraliser of A, i.e. F (G) = CG(A). By11

[8, Theorem 2.2 (ii)], CG(A) is a normal abelian subgroup of G. As F (G) is the unique
maximal normal nilpotent subgroup, the inclusion CG(A) ⊆ F (G) follows. But by [19,
Lemma 1.2 (a)], there is some character χ of G such that [G : F (G)] = χ(1). Since G is
non-nilpotent by assumption, we obtain that

pk = [G : F (G)] ≤ [G : CG(A)] = pk,

where the last equality follows from [8, Theorem 2.2 (ii)]. Thus in particular
(2.3) CG(A) = F (G).
Next, since Q is abelian one can apply [8, Theorem 3.1 (ii)], implying that G/F (G) is cyclic
of order pk. As G is of the form (2.2), we can choose an x ∈ Q such that x̄ := xF (G)
generates G/F (G). As x̄ has order pk, it follows that F (G) ∩ ⟨x⟩ = ⟨xpk ⟩.

Let ⟨y⟩ be the cyclic subgroup of F (G) containing xpk and which is maximal amongst
the cyclic subgroups of Q ∩ F (G) for this property. As Q is abelian, there exists a M ⩽ Q
such that Q ∩ F (G) ∼= M × ⟨y⟩. Note that since F (G) is abelian, eq. (2.2) implies that

F (G) = A × (Q ∩ F (G)) ,

and it follows that
F (G) = N × ⟨y⟩, with N = A × M.

We conclude the proof by showing that
G ∼= N ⋊ ⟨x, y⟩.

Firstly, it is clear that N ∩ ⟨x, y⟩ = {1}, since if t ∈ N ∩ ⟨x, y⟩, then t = xrys for some
r, s ∈ Z. But then ty−s ∈ F (G), which since F (G) ∩ ⟨x⟩ = ⟨xpk ⟩, implies that ty−s = (xpk )ℓ

for some ℓ ∈ Z. But ⟨xpk ⟩ ⩽ ⟨y⟩, and in particular there exists an s′ ∈ Z with t = ys′ . But
N ∩ ⟨y⟩ = {1} by construction, and hence t = 1.

Additionally, N . ⟨x, y⟩ = G, because

|N ||⟨x, y⟩| = |N ||⟨y⟩| |⟨x⟩|
|⟨xpk ⟩|

= |F (G)|[G : F (G)].

Finally, we show that N is normal in G. Combining [8, Theorem 3.1 (iii)] with eq. (2.3),
[19, Lemma 1.6 (d)] now implies that
(2.4) F (G) = CG(A) ∼= Z(G) × G′.

Since N = A × M , and A is normal in G by construction, it suffices to show that M is
normal. We show that in fact ⟨y⟩ × M is even central in G. Indeed, if z ∈ ⟨y⟩ × M ⩽ F (G),
it may be written as z = z1z2 for unique z1 ∈ Z(G) and z2 ∈ G′ by the above. Furthermore,
since Q is an abelian Sylow p-subgroup and so G′ ⩽ A, one has that (o(z2), p) = 1. But by
definition z has order a power of p, and it follows that

⟨z⟩ = ⟨zo(z2)⟩ ⊆ Z(G),

as claimed. Finally, the action of x on N is of order pk, since xpk is the smallest non-trivial
power of x which commutes with N , because F (G) = ⟨N, xpk ⟩ is the maximal normal abelian
subgroup.

For the converse, as [G : F (G)] = pk and F (G) is a normal abelian subgroup, Ito’s
theorem [9, Theorem 6.15] yields that χ(1) divides pk for all irreducible characters χ. Note
also that G′ ≤ N ≤ F (G), hence by [7, Lemma 1] there exists some χ ∈ IrrC(G) with
χ(1) = [G : F (G)] = pk. The assumption | cd(G)| = 2 concludes the proof. □

11The fact that the Sylow p-subgroup Q is abelian yields that G is a {p}-character group as in [8,
Definition 2.1.]
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Example 2.11. Consider the group G := C5 ⋊ C8 = ⟨a, b | a5, b8, ab = a3⟩. It is easily shown
that cd(G) = {1, 4} and F (G) = CG(⟨a⟩) = ⟨a, b4⟩. Thus, in the notation of Proposition 2.9,
N = ⟨a⟩ and C = ⟨b⟩. We see that in this example one can indeed not find a complement
for F (G) itself. Thus the splitting in Proposition 2.9 is the finest possible in general.

Proposition 2.12. Let G be a non-nilpotent finite group such that cd(G) ⊆ {1, pi, pk} with
i < k. Using the notations from (2.2), if Q is abelian then the following hold:

(1) CG(A) = F (G) = Z(G) × G′,
(2) F (G) is the unique maximal abelian subgroup, of index pk,
(3) G/CG(A) is either cyclic of order pk or isomorphic to Cpi × Cpk−i .
(4) Something on decomposition of CG(A) and how G/CG(A) acts on it;

Proof. As explained at the beginning of the section, the group G has the form (2.2) with A
and Q as described there, and G is solvable. Since Q is assumed abelian, in particular G is
solvable of derived length at most 2. It follows from the work of Taunt, [6, VI, Satz 14.7 b)]
that F (G) = Z(G) × G′. Additionally, CG(A) and G/CG(A) are abelian and in particular
it follows from [6, VI, Satz 14.7 a)] that CG(A) = Z(G) × (CG(A) ∩ G′) = Z(G) × G′. It
now also immediately follows that F (G) is the unique maximal abelian subgroup. By the
fact that G is non-nilpotent by assumption, we obtain as in the proof of Proposition 2.12
that [G : F (G)] ∈ {pi, pk}, and [G : CG(A)] = pk. Hence F (G) is of index pk. Now, by [8,
Theorem 2.2], CG(A) is either isomorphic to Cpk or to Cpi × Cpk−i . □

Next consider the nilpotent case. Then the decomposition in (2.2) is a direct product
G ∼= A × Q. A precise classification in the nilpotent case seems hard. Nevertheless note that
{1, 4} = cd(G) = cd(Q). Now applying [8, Theorem 3.10 & Lemma 5.4] yields the following.

Lemma 2.13. Let G be a nilpotent group with cd(G) = {1, 4}, then G ∼= A × Q with A an
odd abelian group and Q a 2-group satisfying the following:

(1) Q has nilpotency class 2,For cd(G) = {1, 2, 4} not
necessarily true, see [16,8].
Maybe still G′2 ⊆ Z(G)? (2) [Q, Q] and Q/Z(Q) are elementary abelian 2-groups.

2.4. Characterisation of the groups. In this section we will give a complete characteri-
sation of groups satisfying property (Mexc) . Recall from (2.2) that G ∼= A ⋊ Q with A an
odd abelian group and Q a 2-group. Denote by φ : Q → Aut(A) the action of Q on A.

In Theorem 2.6 it was proven that such G contain a index two subgroup H such that all
non-division simple components of QH are of the form M2(Q(

√
−d)) with d ∈ Z≥0. Such

groups have already been addressed in [15]. Therefore we will focus on the new cases, i.e.
when M2(

(
−a,−b

Q

)
) ∈ C(QG) for some a, b > 0. For groups having (Mexc) this is equivalent

to the fact that 4 is a character degree of G.Maybe put that equivalence
centrally...

Non-nilpotent groups with (Mexc).

Theorem 2.14. Let G be a non-nilpotent group with (Mexc). With notations as above the
following holds:

(1) A is an elementary abelian 3-group,
(2) [G : F (G)] = [Q : Ker(φ)] | 4 aantonen dat het 2 is en als gevolg dat fitting

non-abelian
(3) something with action by inversion modulo some central part?

If furthermore 4 ∈ cd(G), then Z(G) is an elementary abelian 2-group.
Ik weet niet hoe aan te to-
nen dat Z(Q) een elementair
abelse 2-groep is. Proof. We show the statement by induction on the cardinality of Q. Indeed, suppose that

when |Q| = 2, A is an elementary abelian 3-group. Now suppose G = A ⋊ Q has (Mexc) for
some 2-group Q. Let P ⩽ Q of index 2, and define the subgroup H = A ⋊ P . Then H is a
normal subgroup of G, since it is of index 2. In particular, H has (Mexc) by Lemma 2.8. If
H is non-nilpotent, it follows by the induction hypothesis that A is an elementary abelian
3-group. If H is nilpotent, then H = A × P , and in particular the kernel Ker(φ) of the
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action of Q on A contains P . Since G is non-nilpotent by assumption and P has index 2 in
Q, Ker(φ) = P . Then G/Ker(φ) ∼= A ⋊ (Q/Ker(φ)) ∼= A ⋊ C2. By Lemma 2.3, G/Ker(φ)
has (Mexc), and it follows by assumption that A is an elementary abelian 3-group.

We proceed to show that when Q ∼= C2, A is indeed an elementary abelian 3-group. Since
A is abelian, in particular it is given by A =

∏
q∈π(A) Aq, with Aq the Sylow q-subgroup of

G, which is a characteristic subgroup of G for every q ∈ π(A). We can choose p ∈ π(A) such
that G/Rp, with Rp :=

∏
q∈π(A)\{p} Aq, is non-nilpotent. Indeed, if G/Rp

∼= Ap ⋊ C2 were
nilpotent for every p ∈ π(A), it would follow that C2 acts trivially on every Sylow q-subgroup
of G, and in particular G ∼= A × C2, a contradiction with the non-nilpotency of G. Now
from [8, Lemma 1.2] it follows that Ap

∼= (Ap ∩ Z(Ap ⋊ C2)) × Bp for some characteristic
subgroup Bp ⩽ Ap ⋊ C2. Additionally, Bp is non-trivial, since otherwise Ap ⩽ Z(Ap ⋊ C2),
a contradiction with the assumption on p. Now,

Bp ⋊ C2 ∼= G/ (Rp · (Z(Ap ⋊ C2) ∩ Ap)) ,

and in particular Bp ⋊ C2 has (Mexc) by Lemma 2.3. Let x ∈ Bp have maximal order, say
o(x) = pm. Then there is a subgroup K ⩽ Bp such that Bp

∼= ⟨x⟩ × K (since Bp ⩽ Ap is
abelian). We claim that (Bp, K) is a strong Shoda pair for Bp ⋊ C2. Indeed, to find an
H ⩽ Bp ⋊ C2 such that (H, K) is a SSP for Bp ⋊ C2, by [14, Theorem 3.5.12] it suffices to
show that Bp is a maximal element in the set

S := {D ⩽ Bp ⋊ C2 | Bp ⩽ D and D′ ⩽ K ≤ D}.

Since [Bp ⋊ C2 : Bp] = 2, it follows that D ∈ S can only occur if D = Bp or D = Bp ⋊ C2.
We claim that (Bp ⋊ C2)′ ̸⩽ K, and hence D ∈ S if and only if D = Bp. Indeed, for any
ā ∈ Bp, let a ∈ Ap such that a 7→ ā under the quotient map ϖ : G → Bp ⋊C2. Let C2 = ⟨y⟩.
Then aay commutes with y: (aay)y = ayay2 = aya = aay, where the last equality follows
since ay, a ∈ Ap by definition, and Ap is abelian. Hence aay ∈ Z(Ap ⋊ C2). It follows by
definition of Bp that āāy = ϖ (aay) = 1. In particular, āy = ā−1 in Bp ⋊ C2. We conclude
that [ā, y] = ā−1āy = ā−2 ∈ ⟨ā⟩. In particular, for ā = x, it follows that [x, y] ̸∈ K, and
more generally we obtain that y ∈ NBp⋊C2(Bp).

Combining the latter fact with [10, Lemma 3.4], it follows that

dimQ (Q[Bp ⋊ C2]e(Bp ⋊ C2, Bp, K)) = [Bp ⋊ C2 : Bp] · [Bp ⋊ C2 : NBp⋊C2(K)] · ϕ ([Bp : K])
= 2 · 1 · pm−1(p − 1).

However, since Bp ⋊C2 has (Mexc) by construction, the above Q-dimension is an element of
{4, 8, 16}. It follows that p ∈ {3, 5} and m = 1. In particular, by definition of m, Ap is an
elementary abelian p-group. Suppose p = 5. Then since y acts on Bp by inversion, it follows
from [14, Theorem 3.5.5 (4) and Remark 3.5.6] that

Q(ζ5 + ζ−1
5 ) ⊆ Z(Q[Bp ⋊ C2]e(Bp ⋊ C2, Bp, K)).

However, |Q(ζ5 + ζ−1
5 ) : Q| = 2, and Q(ζ5 + ζ−1

5 ) is a totally real field. But by Theorem 2.1,
if Bp ⋊ C2 has (Mexc), the centres of its 1 × 1 components intersected with R should equal
Q. Since Bp ⋊ C2 has (Mexc) by construction, we obtain a contradiction. Hence Ap is an
elementary abelian 3-group.

In summary, we have proven that G decomposes as G ∼= A3′ × (A3 ⋊ Q) with A3 an
elementary abelian subgroup. add why there can’t be p ≥ 5 in the center (or certainly
not as direct factor), maybe by refering to previous result. Hence A = A3.

Next we prove statement (2). By Theorem 2.6 G has a subgroup H of index 2 such that
all its non-division components are of the form Mn(Q(

√
−d)). In particular, cd(H) ⊆ {1, 2}

by Theorem 2.1. Hence, from [2, Theorem 3] it follows that either H has an abelian subgroup
B ⩽ H of index 2, or H/Z(H) ∼= C2 × C2 × C2. In the latter case, H ′ ⊆ Z(H), and in
particular H is nilpotent of class 2. Thus independent of the case, H contains a nilpotent
subgroup C of index at most 2 in H. Hence there exists a nilpotent subgroup C ⩽ G
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such that [G : C] | 4. Now it follows that A ⩽ C, since |A| is of odd order. In particular,
C = A × (C ∩ Q) ⩽ A × Ker(φ) since C is nilpotent. But then [Q : Ker(φ)] | 4, since

[G : C] = [G/A : C/A] = [Q : (C ∩ Q)] = [Q : Ker(φ)][Ker(φ) : (C ∩ Q)],

and [G : C] | 4. The fact that [Q : Ker(φ)] = [G : F (G)] follows immediately since
A ≤ F (G). □

Nilpotent groups with (Mexc).

Theorem 2.15. Let G be a nilpotent group satisfying (Mexc) and with 4 ∈ cd(G). Then
(1) G is a 2-group
(2) G′ ∩ Z(G) = ... (or with the square of commutator
(3) G has nilpotency class at most 3
(4) something with exponent

Theorem 2.16. Let G be a finite group satisfying (Mexc). If cd(G) = {1, 4}, then ...

3. The block Virtual Structure Problem

Recall definition of SL1

Question 3.1 (block Virtual Structure problem). Let P be a property. Classify the group
algebras FG such that SL1(FGe) has property P for every e ∈ PCI(FG).

3.1. On a generalization of Kleinert - Del Rio. Let P be a group theoretical property
such that

• P implies not FA or not SCPThink which props exactly
to put • SL1 of all exceptional 2 × 2 components satisfy it

• it is a property of commensurability classes.

Example 3.2. Is Gam er zo eentje? Als niet, welk wel? Al die uit de paper van
Zalesski-Del rio

By
∏

P we mean that the group is a direct product of groups satisfying P and an abelian
group. Combining the methods in the proof of [11, Theorem 8.2] nummer updaten and
[15, Theorem 2.1.] with the results of [16] we obtain the following.

Proposition 3.3. Let A be a finite dimensional semisimple F -algebra with F a number
field and O an order in A. If U(O) is virtually-

∏
P, then for every e ∈ PCI(A):

(1) SL1(Oe) is either virtually-Z or virtually-P
(2) The degree of Ae, as CSA, is at most 4

Remark 3.4. Proposition 3.3 shows that for a property constant on commensurability and
direct products the classical Virtual structure problem is equivalent to the block VSP
(Question 3.1).

Begin proof Proposition 3.3. Part 1: Beetje zoals die claim bij onze vorige paper maar nu
opsplitsen in de abelse deel en de amalgam deel en dan argumenteren dat central en de SL1
maar eindig snijden en dus de product van amalgams van finite index nog in de SL1. Op
dat punt zoals ons bewijs.

Part 2: This is more generally the case for a property which imply not FA, cf. work of
Kleinert-Del Rio where they deduce this by considering the associated semisimple Lie group
and do rank computations. □
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3.2. Groups of virtual cohomological dimension 4. Let Γ be a discrete group. Then
the cohomological dimension of Γ over the ring R is

hdimR Γ := min{n | Hk(G, M) = 0 for all k > n and M ∈ mod(RG)}.

If no such n exists one says that hdimR Γ = ∞. A usual obstruction to have a finite
cohomological dimension is torsion in Γ. However, if Γ has a torsion-free subgroup of finite
index (e.g. Γ is linear), then each of such finite index subgroups has the same cohomological
dimension. Hence

vcd(Γ) := {hdimZ Γ′ | [Γ : Γ′] < ∞ and Γ′ torsion-free}.

The finite dimensional simple F -algebras with F a number field and such that vcd(SL1(A)) ≤
2 have been classified in [15, Proposition 3.3]. We extend this result to virtual cohomological
dimension 4.

Proposition 3.5. Let A be a finite dimensional simple F -algebra with F a number field. If
vcd(SL1(A)) = 4, then A is of one of the following forms:

(1) M2(
(

−a,−b
Q

)
) with a, b ∈ N0,

(2) M2(F ), with F a cubic field with precisely one real embedding and one pair of
complex embeddings,

(3)
(

−a,−b
F

)
with F totally real and non-ramified at exactly two real places.

Proof. It should be SL1(O? (for which topology?) Let A = Mn(D), F = Z(D) for an
integer n ≥ 1 and D a division ring of degree d. We make use of the following formula, as
stated in [15, Eq. (1)].

(3.1) vcd(SL1(A)) = r1
(nd − 2)(nd + 1)

2 + r2
(nd + 2)(nd − 1)

2 + s(n2d2 − 1) − n + 1,

where s is the number of pairs of non-real complex embeddings of F , r1 is the number of
real embeddings of F at which A is ramified, and r2 the number of real embeddings of F at
which A is not ramified. We may assume that nd > 1, since when nd = 1, A is a field, which Ik ben totaal niet zelfzeker

over deze terminologie dus
dit moet nog bekeken wor-
den. Voorlopig heb ik het
gewoon overgenomen uit de
free by free paper maar ik
vind het raar

only happens when vcd(SL1(A)) = 0 by [15, Proposition 3.3]. Note that for any choice of
nd ≥ 2, the first two terms of eq. (3.1) are non-negative. Additionally, when d is odd, it
immediately follows that r1 = 0.

Suppose s ≥ 2. Then for any choice of n or d such that nd = 2,

vcd(SL1(A)) ≥ s(n2d2 − 1) − n + 1 > 4,

and this expression is strictly increasing in both n and d. Hence vcd(SL1(A)) > 4 for any
s ≥ 2, and in particular F has at most one pair of complex embeddings.

Suppose s = 1. Then

vcd(SL1(A)) ≥ s(n2d2 − 1) − n + 1 = n2d2 − n > 4,

when n ≥ 3. Hence n is at most 2 in this case. Suppose first n = 1. Then

vcd(SL1(A)) ≥ d2 − 1 > 4 when d > 2.

Thus d = 2 because nd ≥ 2 by assumption. Then we find

vcd(SL1(A)) = r2
4.1
2 + 4 − 1 = 4 ⇐⇒ r2 = −1

2 ,

which is a contradiction since r2 ∈ N. Hence we cannot have n = 1. The only other option
is n = 2. Then n2d2 − n = 4d2 − 2 ≤ 4 if and only if d = 1, in which case

vcd(SL1(A)) = r2
4.1
2 + 2 = 4 ⇐⇒ r2 = 1.

In this case we find that A = M2(F ) with F a cubic number field with precisely one real
embedding and one pair of complex embeddings.
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Suppose now s = 0. We examine the cases r2 = 0 first. Suppose r2 = 0. Then r1 ≥ 1 and

vcd(SL1(A)) = r1
(nd − 2)(nd + 1)

2 − n + 1,

and hence vcd(SL1(A)) = 4 necessarily implies that nd ≥ 3. Suppose first that n = 1. Then

vcd(SL1(A)) = r1
(d − 2)(d + 1)

2 = 4 ⇐⇒ r1 ≤ 2, since d ≥ 3.

If r1 = 2, then vcd(SL1(A)) = (d − 2)(d + 1) = 4 implies that d = 3, but we have already
remarked that r1 = 0 when d is odd, a contradiction. If r1 = 1, then (d − 2)(d + 1) = 8,
which implies that d = 2±

√
32

2 , which is not an integer, a contradiction. We conclude that
if s = 0 and r2 = 0, then n > 1. Suppose n = 2. Then necessarily d ≥ 2 since nd ≥ 3. It
follows that

vcd(SL1(A)) = r1

2 (2d − 2)(2d + 1) − 1 ≥ 4,

with equality if and only if r1 = 1 and d = 2. We find that in this case, A = M2(
(

−a,−b
Q

)
)

for some positive integers a, b. Now the expression r1
2 (nd − 2)(nd + 1) − n + 1 is strictly

increasing in n if and only if n > d−1
r1d2 , which in the case at hand is satisfied since d ≥ 1 and

r1 ≥ 1 by assumption. It follows that vcd(SL1(A)) > 4 whenever n ≥ 3.
Still under the assumption that s = 0, we now turn our attention to the case r2 ̸= 0,

meaning r2 ≥ 1. Then

vcd(SL1(A)) = r2

2 (nd + 2)(nd − 1) + r1

2 (nd − 2)(nd + 1) − n + 1.

If r1 ≥ 1, then d is even, meaning that nd ≥ 4 when n ≥ 2. But when n = 2, then
r2

2 (2d + 2)(2d − 1) + r1

2 (2d − 2)(2d + 1) − 1 ≥ 9r2 + 5r1 − 1 > 4,

and again the expression above for vcd(SL1(A)) is strictly increasing in n. If r1 = 0, then
vcd(SL1(A)) = 4 if and only if r2

2 (nd + 2)(nd − 1) − n = 3. This expression is strictly
increasing in n if and only if n > 1−d

r2d2 , which is always satisfied by assumption on r2 and d.
But when n ≥ 2 and d ≥ 2, meaning in particular that nd ≥ 4, one finds that

r2

2 (nd + 2)(nd − 1) − n ≥ 7,

implying that only the cases n = 1, and (n, d) = (2, 1) need to be investigated. If n = 2 and
d = 1, then

vcd(SL1(A)) = r2

2 (nd + 2)(nd − 1) − n + 1 = 2r2 − 1,

which equals 4 if and only if r2 = 5
2 , a contradiction.

In particular, for any value of r1 only the case n = 1 remains. Assuming n = 1, we have
in particular that d ≥ 2, and

vcd(SL1(A)) = r2

2 (d + 2)(d − 1) + r1

2 (d − 2)(d + 1) ≥ r2

2 (d + 2)(d − 1) ≥ 4,

where the last inequality becomes an equality if and only if d = 2 = r2. In that case one
also finds that r1

2 (d − 2)(d + 1) = 0, and hence vcd(SL1(A)) = 4 if s = 0, r2 = d = 2 and r1

takes any arbitrary integer value. We obtain that A =
(

−a,−b
F

)
for F a totally real number

field which is ramified at precisely two places. If d ≥ 3, it now immediately follows thatDie terminologie is hoe
Doryan en ik het hebben
opgeschreven na onze
berekening, maar komt niet
overeen met de definitie
van r1 en r2 zoals in het
begin van het bewijs, en die
definitie is overgenomen van
de free by free paper

vcd(SL1(A)) ≥ 9r2 + 4r1 > 4, and this concludes our analysis.
□

Remark 3.6. With a similar proof one can verify that vcd(SL1(A)) = 3 if and only if A is
isomorphic to one of the following simple algebras:

• M3(Q),
• M2(Q(

√
d)) with d ∈ N square-free,
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•
(

−a,−b
F

)
such that F has one pair of (non-real) complex embeddings and is ramified

at all real places.
Concerning vcd(SL1(A)) ≤ 2, [15, Proposition 3.3] tells that

• vcd(SL1(A)) = 0 if and only if A is a field or a totally definite quaternion algebra,
• vcd(SL1(A)) = 1 if and only if A ∼= M2(Q)
• vcd(SL1(A)) = 2 if and only if A ∼= M2(Q(

√
−d)) or a quaternion algebra with a

totally real centre and which is non-ramified at exactly one infinite place.

We now have all ingredients for our following main theorem.

Theorem 3.7. need to say no exceptional type I? Let G be a finite group. Then the
following are equivalent:

(1) (Mexc)
(2) vcd(SL1(QGe)) is 0 or a divisor of 4 for each e ∈ PCI(QG)

The proof of Theorem 3.7 will follow quickly out of the results obtained in earlier sections
together with following fact which is of independent interest.

TO do: adapt following proof and statement to arbitrary KG with K a number
field.

Lemma 3.8. Let G be a finite group. Suppose that the simple algebra M2(F ) is a quotient
of QG, with F a cubic extension of Q, say M2(F ) ∼= QGe with e ∈ PCI(QG). Then F is
totally real and π(Ge) ⊆ {2, 3, 7}.

Example 3.9. Zet een voorbeeld waar er ee totlly real is.

Proof. Let λ ∈ F be a torsion element, say of order n. Then it is a primitive nth root of
unity, denoted ζn, and
(3.2) 3 = |F : Q| = |F : Q(ζn)||Q(ζn) : Q| ≥ ϕ(n).
It follows that n ∈ {1, 2, 3, 4, 6}.

Let g ∈ G. By fixing a Q-basis of F as a 3-dimensional Q-space, one can realise g
as a 6-by-6 matrix over Q. We denote by χF,g and χQ,g respectively the characteristic
polynomials of g over F and over Q. Similarly, we write µF,g and µQ,g for the minimal
polynomials of g over respectively F and Q. By definition, any minimal polynomial µQ,g

has degree at most 6, and any µF,g has degree at most 2. Remark that µF,g has degree 1 if
and only if g is a scalar matrix over F .

From [17, Page 147], it follows that for any g ∈ G of prime power order pk, the pkth

cyclotomic polynomial Φpk equals µQ,g. In particular, Q(ζpk ) ∼= Q[X]
(µQ,g) . The latter also holds

over F , when pk > 4. Indeed, µF,g is given as the unique monic polynomial generating
the ideal Ig := {P ∈ F [X] | P (g) = 0}, and the minimal polynomial of ζpk over F is given
by the unique monic polynomial generating the ideal Iζ

pk
:= {Q ∈ F [X] | Q(ζpk ) = 0}.

We claim that Ig = Iζ
pk

. Indeed, by [17, Page 146], there is some matrix B ∈ GL2(C)
such that BgB−1 = diag(λ1, λ2), with each λi a pkth root of unity, amongst which at least
one primitive (otherwise BgB−1 and hence g would have order strictly smaller than pk).
Without loss of generality, assume λ1 = ζpk . Remark that since conjugation by an invertible
matrix induces an algebra automorphism of M2(C), it follows that P ∈ Ig if and only if
P (BgB−1) = 0. In particular, P ∈ Ig if and only if P (ζpk ) = 0 = P (λ2). We conclude that
Ig ⊆ Iζ

pk
. But since deg(µF,g) = 2, and pk > 4 (meaning that ζpk ̸∈ F ), it follows that Ig is

a maximal ideal of F [X], and hence Ig = Iζ
pk

. In particular, F (ζpk ) ∼= F [X]
(µF,g) .

Since Φp divides µQ,g when g ∈ G is an element of prime order p, and the degree of
µQ,g is at most 6 as remarked earlier, it follows that p ∈ {2, 3, 5, 7}, and in particular
π(G) ⊆ {2, 3, 5, 7}. Suppose g ∈ G has order p ∈ {5, 7}. Remark that deg(χF,g) = 2, since
otherwise g would be a scalar matrix with a pth root of unity on the diagonal, which is a
contradiction with the description of torsion elements in F as given in eq. (3.2). Over F (ζp),
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χF,g splits as (X − ζi
p)(X − ζk

p ) for some 0 ≤ i ̸= k ≤ p − 1. Now ζi+k
p ̸= 1 would imply

that F has a pth root of unity, a contradiction by eq. (3.2). Thus, k = −i, and the degree 1
coefficient in χF,g is equal to −(ζi

p + ζ−i
p ). In particular Q(ζi

p + ζ−i
p ) ⊆ F . If p = 5, then

since |Q(ζ5 + ζ−1
5 ) : Q| = 2 does not divide |F : Q| = 3, we obtain a contradiction. When

p = 7, |Q(ζ7 + ζ−1
7 ) : Q| = 3. It follows that F = Q(ζ7 + ζ−1

7 ).
Let now π(G) ⊆ {2, 3}. We bound the exponent of G. Let g ∈ G, say of order 2i3j for

some non-negative integers i, j. If i = 0 or j = 0, then o(g) = pn since Φpn divides µQ,g

for each p ∈ {2, 3} and deg(µQ,g) ≤ 6, it follows that o(g) ∈ {p, p2}. If i ̸= 0 ̸= j, then
considering a realisation of g as an element in GL6(Q), [17, Page 147] implies that there exist
m1, . . . , mr such that o(g) = lcm{m1, . . . , mr}, Φmi

divides µQ,g, and 6 =
∑r

i=1 diϕ(mi),
for some di ≥ 1. In particular each ϕ(mi) ≤ 6. Since π(G) ⊆ {2, 3}, from a case-by-case
analysis it follows that mi ∈ {1, 2, 3, 4, 6, 9, 18}. In particular, exp(G) | 36.

Suppose that G contains an element g of order 9. Then since F (ζ9) ∼= F [X]
(µF,g) , and

deg(µF,g) = 2,
|F (ζ9) : Q| = |F (ζ9) : F ||F : Q| = 6,

and |Q(ζ9) : Q| = 6, it follows that F (ζ9) = Q(ζ9), and in particular F ⊆ Q(ζ9). The only
subfields contained in Q(ζ9) are Q, Q(ζ3) and Q(ζ9 + ζ−1

9 ), a contradiction, and of these
only Q(ζ9 + ζ−1

9 ) is of degree 3 over Q. In particular, we conclude that if π(G) ⊆ {2, 3}
and elements of order 3n necessarily have order 3, then exp(G) | 12. Suppose we are
in this case, and let e ∈ PCI(G) such that QGe ∼= M2(F ). Then by Brauer’s splitting
field theorem12, Q(ζ12) is a splitting field for G, since G has exponent a divisor of 12. In
particular, F ⊆ Q(ζ12). However, Gal(Q(ζ12)/Q) ∼= Z/4Z, which has order coprime to 3,
which together with the fundamental theorem of Galois theory implies a contradiction. □

Now we are able to prove Theorem 3.7.

Proof of Theorem 3.7. First suppose that G has (Mexc), then by Theorem 2.1 the only
division algebra components of QG are of the form XX. Hence inspecting Proposition 3.5
and Remark 3.6 we see that all components indeed have the stated virtual cohomological
dimension.

Conversely, if vcd(SL1(QGe)) ∈ {0, 1, 2, 4} for all e ∈ PCI(QG) then, by the results
referred to above, the only simple algebras not allowed by the property (Mexc) are those
of the form M2(F ), with F a cubic number field with one real embedding and ne pair of
complex embeddings. However by Lemma 3.8 this can’t be the simple component of QG. □

3.3. Higher Kleinian groups: discrete subgroups of SL4(C). Another interesting
property is a kind of higher Kleinian property:

Definition 3.10. A group Γ is said to have property Din if it is a discrete subgroup of
SLn(C), but not of SLn−1(C).

We will be interested in the case that Γ has Din with n a divisor of 4. An alternative
way to look at this is via the 5-dimensional hyperbolic space, as one has the following
isomorphism:

Iso+(H5) ∼= PGL2(
(

−1, −1
Q

)
)

In particular a group Γ acts discontinuously correct terminology? on13 H5 if and only if
Γ has Di4 .

The finite dimensional simple algebras A such that SL1(A) is Kleinian, i.e. is a discrete
subgroup of SL2(C) were classified in [15, Proposition 3.2].

12referentie?
13Hereby one assumes that the action on H5 doesn’t come from the inbedding of an action on H4.



THE VIRTUAL STRUCTURE PROBLEM FOR HIGHER MODULAR GROUPS 19

Proposition 3.11. Let A be a finite dimensional simple F -algebra with F a number field
and O an order in A. Then SL1(A) has property Di4 if and only if A has one of the following
forms:

(1) M2(
(

−a,−b
Q

)
) with a, b ∈ N0,

(2) M4(Q),
(3)

(
−a,−b

Q(
√

−d)

)
with a, b ∈ N0 and d ∈ N>1 square-free,

(4) a division algebra of degree 4 which is non-ramified at at most one infinite place.

Proof. Dit ging via een karakterisatie als discreet inbedden in product plaatsen en dan
strong approximation. Vervolgens ook nog aantonen dimensie deler van 16 of zo. □

Remark 3.12. The proof of Proposition 3.11 also yields that SL1(O) has property Di3 if and
only if A is isomorphic to M3(Q), M2(Q(

√
−d)) or a division algebra of degree 3 which is

non-ramified at at most one infinite place.
Concerning Di2, [15, Proposition 3.2] says that SL1(O) has Di2 if and only if vcd(A) ≤ 2

or A is quaternion division algebra which is ramified at all its infinite places and having
exactly one pair of complex embeddings.

Explain, with Free-by-free in mind it is natural to put the condition that
there is no exceptional type I

Theorem 3.13. Let G be a finite group satisfying (Mexc) and having no exceptional division
algebra components. Then G has Din for n | 4. The converse also holds if G has a fitting
subgroup of index 2.

Proof. Next consider property Din with n a divisor of 4. Combining Remark 3.12, Proposi-
tion 3.11 and Theorem 2.1 we see that (Mexc) implies the desired property. To complete
the converse once the statement is chosen □

Remark 3.14. The condition that there is no exceptional division algebra components is an
important one. Indeed, The groups C3 ⋊ C2n and Cm × Q8 have (Mexc) but not Din
with n | 4 due to bad division components!!! In particular we see that in Free-by-free,
i.e. when all components are even nicer, then also the condition is required. Consider
the group XX. This has Din for n | 4, but no (Mexc). For that group however the fitting
subgroup has index 4.

3.4. Further questions. blabla

4. The good property and amalgamated products of exceptional components

4.1. Amalgams of Higher Bianchi groups. In this section we prove, using our
previous works, that the 2×2 exceptional components are virtually of the desired
amalgam type. We zullen hier sowieso nog verdere studie van de amalgams van
onze werk in literatuur moeten doen.

Proposition 4.1. Let O be an order in D such that U(O) is finite. Then E2(O) has
virtually such an amalgam.

4.2. The good property. The aim of this section will be to give several equivalent
geometric group theoretical properties for (Mexc)

For this section we fix for each e ∈ PCI(G) a maximal order Mne
(Oe) in QGe. The

arguments will however be independent of this choice. Further denote by Γ̂ the profinite
completion of a group Γ. Recall that Γ is called good if the map

Hj(Γ̂, M) → Hj(Γ, M),
induced by the inclusion of Γ in its completion, is an isomorphism for any j and finite
Γ-module M . By [5] the property to be good is one of commensurability classes and is closed
under direct product. In particular SL1(ZG) is good exactly when SLn(Oe) is good for all
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e ∈ PCI(G). Still to clarify role of the center!! Combining results in the literature one
obtains:

Lemma 4.2. Let G be a finite group with (Mexc). Then SL1(ZGe) satisfies the good property
for all e ∈ PCI(QG).

Proof. In ?? it was proven that SLn(O) is not good if it enjoys the subgroup congruence
property. In particular if n ≥ 3 or n = 2 and U(O) is infinite, then it is not good, e.g. see
??.

Put Zaleskii stuff together for the matrix components. But for quaternion
algebras really need to think!! □

Using this we know can solve the virtual structure problem for U(ZG) and the good
property.

Theorem 4.3. Let G be a finite group. Then U(ZG) is good if and only if een van de
karakterisaties van de vorige secties.

5. The blockwise Zassenhaus property

An interesting corollary of ?? is that the finite groups such that U(ZG) is virtually-G∞
satisfy a kind of component-wise third Zassenhaus conjecture.to update to now notations

Corollary 5.1. Let G be a finite group such that U(ZG) is virtually-G∞. If H is a finite
subgroup of V (ZG), then for all e ∈ PCI(QG) we have that He is conjugated, inside U(ZGe),
to a finite subgroup of Ge.

Recall that U(ZG) = ±1.V (ZG) where V (ZG) are the units of augmentation one and
that U(ZG)) satisfies the third Zassenhaus conjecture if any H ≤ V (ZG) is conjugated
inside QG to a subgroup of G. Using the recent survey [?] one can check that the 12 families
of groups satisfying virtually-G∞ (see [18, Theorem 1]) are not all among a known case of
the third Zassenhaus conjecture. In case of the Zassenhaus conjectures the conjugation
is expected to be in U(QG), hence it is remarkable that for this class of groups one can
perform the conjugation inside an order of U(QGe).

The proof of Corollary 5.1 will in fact be a corollary of Lemma 5.2 and the investigation of
independant interest of the “Strong Zassenhaus property", which we introduce in Section 5.1,
for exceptional components.

5.1. Zassenhaus property for semisimple algebras. write my notes here
To proof Corollary 5.1 we first record the following lemma which is of independent interest.

Make following more general !!

Lemma 5.2. Let G be a finite group and H ≤ V (ZG) a finite subgroup. Then |He| | |Ge|
for every primitive central idempotent e of QG.also prove exponente and set of order
elements

Proof. Fix a primitive central idempotent e of QG and consider the associated epimorphism
φ : G → Ge. We Z-linearly extend the latter to the ring epimorphism Φ : Z[G] → Z[Ge].
Denote N := ker(φ) = {g ∈ G | ge = e}. Note that ker(Φ) = ω(G, N), the relative
augmentation ideal. Also, by definition of the map, Φ(V (Z[G])) ⊆ V (Z[Ge]). Hence Φ(H)
is a finite subgroup of V (Z[Ge]) hence |Φ(H)| | |Ge| (e.g. see [?, Corollary 2.7]).

It remains to prove that |He| | |Φ(H)|. For this define the ring epimorphism π : Z[G] →
Z[G]e : x 7→ xe. Since π(n − 1) = ne − e = 0 for all n ∈ N , one has that ω(G, N) ⊆ ker(π).
Therefore we have a unique morphism σ : Z[Ge] → Z[G]e such that π = σ Φ. In particular
He = π(H) = σ(Φ(H)) is an epimorphic image of Φ(H) and hence |He| | |Φ(H)|, as
needed. □
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5.2. Strong Zassenhaus for quaternion algebras and fields.

Proposition 5.3. Let G be a finite group and e ∈ PCI(QG) such that QGe is some
quaternion algebra or a field. Then for any H ≤ V(ZG) the groups He and Ge are
conjugated in QGe.

Proof. TO COMPLETE to all quaternions Suppose QGe is isomorphic to a field F .
The unit group of its unique maximal order (i.e. its rings of integers) is a finitely generated
abelian group. Thus He and Ge are subgroups of the torsion group which is cyclic. Hence
the dividing orders yield that He ≤ Ge, as desired. Suppose QGe ∼=

(
−a,−b

Q

)
, then by [22,

Theorem 11.5.14] U(ZGe) is cyclic except if (a, b) = (−1, −1) or (a, b) = (−1, −3) and ZGe

is the Lipschitz order, the Hurwitz order or the maximal order14 of
(

−1,−3
Q

)
. Recall that the

last two cases are the unique maximal order, thus we already have that He ≤ Ge if ZGe is
not the Lipschitz order in

(
−1,−1

Q

)
. In the remaining case Ge ∼= Q8 and He is some subgroup

of the unit group of the Hurwitz quaternions (i.e. a subgroup of SL(2, 3) ∼= Q8 ⋊ C3). Since
|He| | |Ge| we see that in fact He ≤ Ge, finishing all possible cases. □

5.3. The exceptional GL2(O) case. Do here like we did for GL2(Z) in our previous paper.

Theorem 5.4. Let G be a finite group and e ∈ PCI(QG) such that QGe ∼= M2(D) with15

D ∈ {Q(
√

−d),
(

−a,−b
Q

)
| a, b, d ∈ N}. Then for any H ≤ V(ZG) the groups He and Ge are

conjugated in QGe.

plan: component per component werken via expliciete amalgam van ’grote’ finite index
deelgroepen. Probleem is dat niet steeds de hele component zo’n decompositie heeft, maar
mischien ZGe desondanks toch steeds in eentje?

Proof. If it is M2(Q), then U(ZGe) = GL2(Z) ∼= D8 ∗C2×C2 D12. Therefore there exists some
αe ∈ U(ZGe) such that α−1

e Geαe is a subgroup of D8 or D12. Since the Q-span of Ge is
M2(Q) we get that α−1

e Geαe = D6, D12 or D8. In particular |Ge| determines uniquely its
isomorphism type. The same holds for He if He is non-abelian. Therefore, as |He| | |Ge|
by Lemma 5.2, we have the desired statement in that case. Suppose now that |He| = 4. If
He ∼= C4, then He is up to conjugation a subgroup of D8 and due to the dividing of the
orders, again He ≤ Ge after conjugation. If it is an elementary abelian 2-group, then it is
uniquely defined in both D12 and D8. As this subgroup is amalgamated we are done. □

Proof of Corollary 5.1. By Lemma 5.2 |He| | |Ge| for every primitive central idempotent e
of QG. By Theorem 2.1 the simple algebra QGe is either a field, a specific type of quaternion
algebra or some exceptional simple algebras. The strong Zassenhaus property of the former
is proven in ?? and for the latter in Theorem 5.4. TO UPDATE. □

5.4. On the difference between block-wise ISO and ISO. We develop an obstruction
theory describing how to glue properties ZC-properties of components to one for the
semisimple algebras. Hopefully we show that this obstruction vanishes if QG embeds in its
1 × 1 and exceptional 2 × 2-components. Who know start some non-abelian cohomology
theory that measures the difference (in the philosophy of Kimmerle-Roggenkamp)...
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