
A BASIS AND SCHUR–WEYL DUALITY FOR THE LOOP HECKE ALGEBRA

GEOFFREY JANSSENS, ABEL LACABANNE, LÉO SCHELSTRAETE AND PEDRO VAZ

ABSTRACT. The loop Hecke algebra is a generalization of the Hecke algebra to the loop braid
group, introduced by Damiani, Martin and Rowell. We give a new presentation of the loop Hecke
algebra provided a mild condition on the parameter and give a basis. We use higher rewriting the-
ory to show linear independence and the combinatorics of Dyck paths to compute the cardinality
of the basis. This proves a conjecture of Damiani–Martin–Rowel. We also give a representa-
tion theoretic interpretation of the loop Hecke algebra in terms of (non-semisimple) Schur–Weyl
duality involving the negative half of quantum gl(1|1).
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1. INTRODUCTION

The classical braid group Bn can be identified with the group of motions of n points in the
plane R2. In a similar spirit, the loop braid group LBn is the group of motions of n unlinked cir-30

cles in the space R3. This definition was given by Dahm in his unpublished PhD thesis [10], then
published and extended by Goldsmith [14]. The terminology is due to Baez, Wise and Crans [1],
inspired by physical motivations. As its classical counterpart, the loop braid group admits many
different definitions, reflecting its connections with various fields: as certain automorphisms of
the free group on n generators [22, 31]; as certain braid-like objects called welded braids [13],35

in connection to virtual knot theory [18] and knotted surfaces [30]; or as the configuration space
of n unlinked circles in R3 [4]. We refer the reader to [11] for an overview.

The loop braid group admits an Artin-like presentation (see e.g. [13]):

LBn :=

〈
σ1, . . . , σn−1,
ρ1, . . . , ρn−1

∣∣∣∣∣∣
σiσi+1σi = σi+1σiσi+1, ρiρi+1ρi = ρi+1ρiρi+1, ρ

2
i = 1,

ρiσi+1σi = σi+1σiρi+1, σiρi+1ρi = ρi+1ρiσi+1,
σiσj = σjσi, ρiρj = ρjρi, σiρj = ρjσi for |i− j| > 1

〉
(1)

The generators σi correspond to the ith circle passing through the (i+ 1)th circle; they generate
a copy of the braid group Bn ↪→ LBn. The generators ρi correspond to permuting the ith circle40

and the (i+1)th circle; they generate a copy of the symmetric group Sn ↪→ LBn. The remaining
relations are mixed relations, capturing how the copy of the braid group Bn and the copy of the
symmetric group Sn interact inside LBn.

To study a group, one looks for interesting representations. As the braid group Bn sits inside
the loop braid group LBn, a natural approach is to try to extend a representation of Bn to a repre-45

sentation of LBn. Arguably, the most classical representation of Bn is the Burau representation
[7]:

Fn : LBn → V ⊗n,

where V is a 2-dimensional complex vector space. It has a long history, with connection to
the Alexander polynomial and a still-standing faithfulness conjecture for n = 4. It is known
to factor through the Hecke algebra Hn, defined as a quotient of the group algebra C[Bn] by50

quadratic relations σ2
i = (t+ 1)σi + t.

Recently, Damiani, Martin and Rowell [12] introduced the loop Hecke algebra LHn as an
analogue for LBn of the Hecke algebra1. This builds on earlier work by Vershinin [35] extending
the Burau representation to the loop braid group. Their definition is an analogue of the definition
of the Hecke algebra: it is a quotient of the group algebra Z[LBn] by certain quadratic relations55

(see Definition 1.2). Although not clear from the definition, it was shown in [12, Corollary
3.5] that LHn is finite dimensional. Furthermore, rather surprisingly, the dimension should be
independent of t under the intriguing condition that t2 ̸= 1:

Conjecture 1.1 (Damiani–Martin–Rowell). Let Cz be the complex numbers C seen as a left
Z[t]-module by evaluating t at z ∈ C. Then for z ̸= ±1:60

dimC LHn ⊗Z[t] Cz =
1

2

(
2n

n

)
.

1To the authors’ knowledge, there is no relationship with loop algebras as appearing in affine Lie theory.
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The first aim of this paper is to confirm Conjecture 1.1. The main idea is a new presentation
of LHn, valid when z ̸= ±1, which does not explicitly depend on the parameter t. Using this
new presentation, we are able to describe an explicit basis. Linear independence is shown in
Section 2 using a higher analogue of the diamond lemma. We count the cardinality of the basis
using the combinatorics of Dyck paths in Section 3. Finally, we show in Section 7 that the two65

presentations are equivalent when z ̸= ±1, leading to a proof of the conjecture. A more detailed
introduction is given in Section 1.1 and Section 1.2 below.

The second aim of this paper is to give a representation theoretic interpretation of the loop
Hecke algebra. The braid group is Schur–Weyl dual to the quantum Uq(gl(1|1)) through the
Burau representation [17]. That is, one can realize V as a representation of Uq(gl(1|1)), such70

that the braiding on V ⊗n induced by Fn coincides with the braiding induced by the quantum
group Uq(gl(1|1)). Furthermore, the Hecke algebra fully describes Uq(gl(1|1))-intertwiners, in
the sense that the algebra morphism

Hn ⊗Z[t] C(t) → EndUq(gl(1|1))(V
⊗n)

is surjective. In this paper, we show that a similar statement holds for the loop Hecke algebra
LHn. Since LHn is “larger” than Hn, we must “shrink” Uq(gl(1|1)). It turns out that the right75

answer is to consider its negative-half Uq(gl(1|1))≤0. In Section 4 we recall some background
on Uq(gl(1|1)) and its representations. Section 5 is the core of this second part of the paper,
showing a Schur–Weyl duality between LBn and Uq(gl(1|1))≤0. Finally, we use this result in
Section 6 to further study the loop Hecke algebra from a ring-theoretic perspective. A more
detailed introduction is given in Section 1.3.80

We now give a more detailed account of the main results and objects. We conclude with some
further directions of research in Section 1.4.

Acknowledgment. G.J. is grateful to Fonds Wetenschappelijk Onderzoek Vlaanderen - FWO
(grant 88258), and le Fonds de la Recherche Scientifique - FNRS (grant 1.B.239.22) for financial
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about Conjecture 1.1 during the problem session of the Banff workshop ”Skew Braces, Braids
and the Yang-Baxter Equation” (24w5201).

1.1. A parameter independent presentation of the loop Hecke algebra. We recall the defini-90

tion of the loop Hecke algebra:

Definition 1.2 ([12, section 3B]). The loop Hecke algebra LHn is the associative unital Z[t]-
algebra generated by σ1, . . . , σn−1 and ρ1, . . . , ρn−1, subject to the loop braid relations

σiσi+1σi = σi+1σiσi+1, ρiρi+1ρi = ρi+1ρiρi+1, (2)
ρiσi+1σi = σi+1σiρi+1, σiρi+1ρi = ρi+1ρiσi+1, (3)

σiσj = σjσi, ρiρj = ρjρi, σiρj = ρjσi, for |i− j| > 1, (4)
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and the quadratic relations

ρ2i = 1, (σi − 1)(σi + t) = 0, (5)
(ρi − 1)(σi + t) = 0, (σi − 1)(ρi + 1) = 0. (6)

Note that relations (2), (3) and (4) are the defining relations of the loop braid group LBn given
in (1).

Remark 1.3. In [12] the loop Hecke algebra is defined as the Z[t, t−1]-algebra generated by the95

relations (2)-(6). However, as pointed out around [12, eq. (3-14)], it is senseful to define it over
Z[t]. The extension LHn ⊗Z[t] Z[t±1] has the advantage that t−1(σi + t− 1) is an inverse for σi;
however, we will not require this fact.

When t− 1 is invertible one could consider the following alternative generating set for LHn:

Di = (σi − ρi)/(1− t) and Ui = (σi − tρi)/(1− t),

for 1 ≤ i ≤ n− 1. It turns out that for these generators LHn has a more symmetric presentation,
under some further conditions on the parameter. This and some experiments for small n using100

MAGMA motivate considering the following Z-algebra:

Definition 1.4. For each n ∈ N>0, the integral form of the loop Hecke algebra L̃Hn is the
Z-algebra with generators Di and Ui for each 1 ≤ i ≤ n− 1, subject to the following relations2:

DiDi = Di DiUi = 0 UiDi = Ui +Di − 1 UiUi = Ui (7)

for 1 ≤ i ≤ n− 1 and

DiUi+1 = Ui+1Di UiDi+1 = 0 Di+1Ui = Di+1 + Ui − 1 (8)
DiDi+1Di = Di+1Di = Di+1DiDi+1 (9)
UiUi+1Ui = Ui+1Ui = Ui+1UiUi+1 (10)

for 1 ≤ i ≤ n− 2 and105

UiDj = DjUi UiUj = UjUi DiDj = DjDi |i− j| > 1 (11)

for 1 ≤ i, j ≤ n− 1.

Note that the Ui’s and Di’s still satisfy the braid relations (9)-(10), but the quadratic relations
(5)-(6) combine to the nicer relations (7), which do not involve the parameter t. Note also that
the generators of L̃Hn are idempotent elements.

An important step towards confirming Conjecture 1.1 is to prove that the presentation in Defi-110

nition 1.4 is also one of the loop Hecke algebra.

Theorem A (Corollary 7.2). Let Cz be the complex numbers C seen as a left Z[t]-module by
evaluating t at z ∈ C. Then for z ̸= ±1, the loop Hecke algebra LHn (Definition 1.2) and its
integral form L̃Hn (Definition 1.4) are isomorphic over C:

LHn ⊗Z[t] Cz
∼= L̃Hn ⊗Z C.

2In fact, the relations UiUi+1Ui = Ui+1Ui andDi+1DiDi+1 = Di+1Di are consequences of the other relations;
see Remark 7.4.
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A more general statement is given in Theorem 7.1. The main difficulty in the proof is to verify115

that the image in LHn of the relations (8)-(10) holds. The full Section 7.1 will be dedicated to
that.

1.2. A basis for the loop Hecke algebra and consequences. The relations of L̃Hn have the
advantage of saying how to swap any two generators. This allows us to obtain a basis, which
we now introduce. First, recall that a permutation τ ∈ Sm is called 321-avoiding if there is no120

i < j < k such that τ(i) > τ(j) > τ(k).

Definition 1.5. A word in the alphabet {Ui, Di}1≤i<n is said to be L̃Hn-reduced if it is of the
form

ω = D U

for D (resp. U ) a 321-avoiding reduced word in the alphabet {Di}1≤i<n (resp. {Ui}1≤i<n) for
each 1 ≤ i < n,3 if Di is a letter of D, then Ui and Ui−1 are not letters of U :

Di ∈ D ⇒ Ui, Ui−1 ̸∈ U. (12)

We write Red(L̃Hn) for the set of L̃Hn-reduced words.

Theorem B (Theorem 2.1). For each n ∈ N>0, the set Red(L̃Hn) of L̃Hn-reduced words125

defines a basis of L̃Hn.

We provide two proofs of linear independence of Red(L̃Hn). The first one, given in in Sec-
tion 2, works over Z and uses higher linear rewriting theory [32]. Rewriting theory is also known
as Gröbner bases theory [5, 33] or Bergman’s diamond lemma [3] depending on the context and
the perspective. Readers familiar with the latter should be able to follow Section 2 without prior130

knowledge of [32]. In fact, our proof provides a “higher Gröbner basis” for L̃Hn, i.e. a solution
to the word problem (see Corollary 2.5).

The second one works over Cz, and is a by-product of the proof in Section 5 of our Schur–Weyl
type theorem, see Remark 5.10.

Next, we count L̃Hn-reduced words:135

Theorem C (Theorem 3.1). The cardinality of Red(L̃Hn) is 1
2

(
2n
n

)
.

The proof is the content of Section 3. It uses the combinatorics of Dyck paths, which may be
of independent interest.

Taken together, Theorem A, Theorem B and Theorem C imply that Conjecture 1.1 indeed
holds.140

Corollary D. Let Cz be the complex numbers C seen as a left Z[t]-module by evaluating t at
z ∈ C. Then for z ̸= ±1:

dimC LHn ⊗Z[t] Cz =
1

2

(
2n

n

)
.

A more general statement is given in Corollary 7.3.
3That is, D and U are 321-avoiding reduced words each in their own alphabet.
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In [12, Theorem 5.2] it is shown that the map defined by

Fn : LBn → End(W⊗n) :

{
σi 7→ id

⊗(i−1)
W ⊗M ′(σi)⊗ id

⊗(n−i−1)
W

ρi 7→ id
⊗(i−1)
W ⊗M ′(ρi)⊗ id

⊗(n−i−1)
W

(13)

with W a 2-dimensional vector space,

M ′(σi) =


1 0 0 0
0 1− t t 0
0 1 0 0
0 0 0 −t

 and M ′(ρi) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1


is a representation4 of the loop braid group LBn which factors through the loop Hecke algebra145

LHn. The authors call Fn the extended super representation, denoted SP in [12], or the Burau–
Rittenberg representation. Furthermore, they study the k-algebra SPn := Fn(kLBn), where k is
a field with a fixed element t. For instance, if t ̸= 1, then dimk SPn = 1

2

(
2n
n

)
[12, Theorem 5.8]

and furthermore SPn−1 embeds in SPn [12, Proposition 5.6]. Both properties however remained
open for LHn.150

Now concerning the former statement, comparing dimensions we see that LHn
∼= SPn if

t ̸= ±1. We also obtain the latter from Theorem 3.1 as it yields that LHn has a basis which is a
subset of the basis of LHn+1. In summary:

Corollary E. For each n ∈ N>0 the following holds:

(1) the canonical morphism LHn → LHn+1 is injective.155

(2) the representation Fn induced on LHn is faithful when t ̸= ±1.

1.3. On a Schur–Weyl duality for the loop Hecke algebra. In the recent years there has been
quite some interest in describing representations of LBn which are extended from representations
of the classical braid group Bn, e.g. [6, 9, 21]. There has been particular attention to so-called
local representations which include those representations associated to a braided vector space.160

However, in contrast to the symmetric loop braid group5, only a single R-matrix seems to be
known that yields a local representation of LBn, see [12, Remark 5.4]. The second main aim of
this paper is to contribute to this and subsequently to use it to provide a Schur–Weyl duality for
LHn..

(GJ: I will write the rest later.)165

1.4. Further questions.

4Note that M ′(σi) is one form of the Burau representation. As pointed out in [12], if one considers another form
of the Burau representation where the right down corner of M ′(σi) (and M ′(ρi)) is replaced by 1, then one does not
obtain a representation of LBn.

5This is LBn modulo the relation ρiσi+1σi = σi+1σiρi+1. It is also called the unrestricted virtual braid group
in [19].
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2. A BASIS FOR THE INTEGRAL FORM OF THE LOOP HECKE ALGEBRA

In this section, we prove a basis theorem for the integral form of the loop Hecke algebra:

Theorem 2.1. For each n ∈ N>0, the set of L̃Hn-reduced words (see Definition 1.5) defines a
basis of L̃Hn (see Definition 1.4).170

It will be convenient to package the Z-algebras L̃Hn for each n into one Z-linear monoidal
category: we define the loop Hecke category in Section 2.1. Section 2.2 describes reduced words
using pattern avoidance. These two sections are preliminaries for Section 2.3, where we prove
Theorem 2.1 using higher linear rewriting theory. This gives an intrinsic proof of Theorem 2.1.
Another proof of linear independence will be given in Section 5 (see Remark 5.10), using Schur–175

Weyl duality.

2.1. The loop Hecke category.

Definition 2.2. The loop Hecke category L̃H is the Z-linear monoidal category given by the
following presentation:

• one generating object, so that ob(L̃H) ∼= N;180

• two generating morphisms

U : 2 → 2 and D : 2 → 2

• subject to the following relations, where we abuse notation in (15), (16) and write U for
U ⊗ id1, we write U+ := id1 ⊗ U , and similarly for D and D+:

DD = D DU = 0 UD = U +D − 1 UU = U (14)
DU+ = U+D UD+ = 0 D+U = D+ + U − 1 (15)

DD+D = D+D = D+DD+ UU+U = U+U = U+UU+ (16)

The hom-spaces of L̃H recover the algebras L̃Hn:

Hom
L̃H

(n, n) = L̃Hn,

where the identification is given by185

Ui = idi−1⊗U ⊗ idn−i−1 and Di = idi−1⊗D ⊗ idn−i−1 .

Note that the relations (11) are not explicitly part of the above presentation, as they correspond
to the interchange law of a monoidal category. For that reason, we will refer to these relations as
interchange, even when considered in the algebra L̃Hn.

2.1.1. Symbolics. In what follows, we will often abuse notation and write

U = idi−1⊗U ⊗ idn−i−1, U+ := idi ⊗U ⊗ idn−i−2, and U++ := idi+1 ⊗U ⊗ idn−i−3

for some i and n clear from context.190
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2.1.2. Diagrammatics. It will be convenient to have a diagrammatic notation for morphisms in
the loop Hecke category. We define:

U := and D := .

In diagrammatic notation, the definition relations of L̃H become

= = 0 = + − =

= = 0 = + −

= = = =

2.2. A pattern-avoiding description of reduced words. Recall from Definition 1.5 the notion
of word and L̃Hn-reduced word. Say that a word is L̃H-reduced if it is L̃Hn-reduced for some195

n ∈ N.
Recall that we call “interchange” the relations (11).

Lemma 2.3. A word is L̃H-reduced if and only if it avoids the following patterns, up to inter-
change:

UD U+D UD+ (17)
DD UU DD+D D+DD+ UU+U U+UU+ (18)

DU D+U DU+U D+DU+ (19)
D+DU++U+ (20)

Here we use the abuse of notation from Section 2.1.1. For instance, fixing n ∈ N, the pattern200

D+U covers all patterns of the form Di+1Ui for 1 ≤ i ≤ n− 2.

Proof. For the purpose of the proof, we call R-reduced6 any word that avoids patterns (17), (18),
(19) and (20), up to interchange. It is clear that if a word is L̃Hn-reduced, then is it R-reduced.
Let then ω be an R-reduced word. Since ω avoids the patterns (17), it is of the form ω = D U
for D and U words in the alphabets {Di}1≤i<n and {Ui}1≤i<n, respectively. Since ω avoids the205

patterns (18), the words D and U are 321-avoiding and reduced.
It remains to check that ω verifies the condition (12). Let then 1 ≤ i ≤ n − 1 such that Di

appears as a letter in D, and denote d the rightmost such letter in D. Using interchange, move
d to the right within D, as much as possible. (In the process, other letters may move as well.)
Since D is 321-avoiding and reduced, this expresses D as210

D = D′ DiDi+1 . . . Di+m+Di−1Di−2 . . . Di−m− ,

6The terminology “R-reduced” (or “R-normal forms”) is a rewriting terminology, used explicitly in the proof of
the basis theorem below. For the purpose of the proof, this can be taken as an ad-hoc terminology.
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where Di above is the chosen letter d, and m+,m− are non-negative integers. (If m− = 0, then
Di−1Di−2 . . . Di−m− is the empty word.) Note that if Ul is the leftmost letter of U , we must have
either l < i−m− − 1 or i+m+ < l, since ω = D U avoids the patterns (19).

Pick 1 ≤ j ≤ n − 1 such that Uj appears in U , and let u be the leftmost such letter in U .
Similarly as above, we can express U as215

U = Uj−n− . . . Uj−2Uj−1Uj+n+ . . . Uj+1Uj U
′

whereUj above is the chosen letter u, and n−, n+ are non-negative integers. IfDk is the rightmost
letter of D then we must have either k < j − n− or j + n+ + 1 < k.

Let

M± :=

{
m± if m± ≥ 1,

−m∓ otherwise
and N± :=

{
n± if n± ≥ 1,

−n∓ otherwise
.

The letters Di−M− and Di+M+ (resp. Ui−N− and Ui+N+) are, up to interchange, rightmost letters
in D (resp. leftmost letters in U ). The conditions above give:

(i−M− < j − n− or j + n+ + 1 < i−M−)

and (i+M+ < j − n− or j + n+ + 1 < i+M+)

and (j −N− < i−m− − 1 or i+m+ < j −N−)

and (j +N+ < i−m− − 1 or i+m+ < j +N+).

Using that M± ≤ m± and N± ≤ n±, we see that i−M− < j − n− and j −N− < i−m− − 1
cannot hold at the same time; similarly, j+n++1 < i+M+ and i+m+ < j+N+ cannot hold
at the same time. It follows that:

(j + n+ + 1 < i−M− or i+m+ < j −N−)

and (i+M+ < j − n− or j +N+ < i−m− − 1).

If the first equation holds and M− ≥ 0, then j + 1 < i and the pair (i, j) verifies condition
(12); similar statements hold for the three other inequalities. Moreover, at least one element of220

{M−,M+} is non-negative; and similarly for {N−, N+}. Hence, it only remains to check the
following two cases:

• M−, N+ < 0: this implies that m− = n+ = 0;
• M+, N− < 0: this implies that m+ = n− = 0.

In both cases, we can use the avoidance of pattern (20) to conclude that we have either i < j or225

j + 1 < i. □

2.3. Proof of the basis theorem via rewriting theory. We wish to show Theorem 2.1. Recall
that given a linear monoidal category, a hom-basis is a basis for each hom-space. Theorem 2.1
equivalently states that L̃H-reduced words define a hom-basis of the loop Hecke category L̃H

(Definition 2.2).230

With the pattern-avoidance description of reduced words given in Lemma 2.3, it is not difficult
to show the following:

Lemma 2.4. For each n ∈ N, the set of L̃Hn-reduced words generates L̃Hn as a Z-module.
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Proof. Let ω be any word in the alphabet {Ui, Di}1≤i<n. Each pattern described in Lemma 2.3
can be rewritten using a relation in L̃Hn. This follows from the defining relations and the rela-235

tions
D+DU+ = 0, DU+U = 0 and D+DU++U+ = 0,

which are easy consequences of the defining relations. As long as ω contains one of the patterns
in Lemma 2.3, we continue rewriting it. This process will eventually terminate, as rewriting a
pattern strictly decreases the number of letters. This shows that ω can be expressed as a linear
combination of reduced words, using relations in L̃Hn. □240

To show linear independence, we use higher linear rewriting theory, as introduced in [32].
In fact, the case of the loop Hecke category is rather simple compared to other monoidal cate-
gories, and combining linear rewriting (see [15]) and higher rewriting (see e.g. [16]) is relatively
straightfoward; see Remark 2.11 for a discussion. In particular, it allows us to phrase our discus-
sion and review of [32] in terms that resemble the classical theory of Gröbner bases [5, 33], or245

Bergman’s diamond lemma [3], for associative algebras. We begin with an informal discussion
of the main ideas; they are (semi-)formalized in Section 2.3.1, which gives a minimal review of
the relevant theory from [32]. Section 2.3.2 explains how the theory is applied to the loop Hecke
category, the full details being postponed to Appendix A.

The proof of Lemma 2.4 defined a process that rewrites every word as a linear combination250

of reduced words; it is encapsulated in Figure 1 (symbolics) and Figure 2 (diagrammatics). The
idea of rewriting theory is to formalize this process as an algorithm, where each step is called a
rewriting step; by studying the properties of this algorithm, we will deduce linear independence.
More precisely, we wish to show that not only can we rewrite a word as a linear combination of
reduced words, but moreover this linear combination is unique. The latter is highly non-obvious,255

since a word can have two forbidden patterns at the same time, and our process does not choose
which one should be rewritten first (in other words, the algorithm it defines is not deterministic).
For instance the word DU+D can be rewritten in two different ways:

D+U +D+D −D+

D+UD

D+D + UD −D

(21)

Such a pair of rewriting steps is called a (local) branching. While the two rewriting steps have
distinct target, one can check that they confluate, it the sense that one can use further rewriting260

steps to reach a common target:

D+U +D+D −D+ D+ + U − 1 +D+D −D+

D+UD D+D + U − 1

D+D + UD −D D+D + U +D − 1−D

We say that the algorithm confluates if every branching confluates; in this case, a word always
rewrites as a linear combination of reduced words in a unique way. In fact, to show confluence
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DD → D DU → 0 UU → U UD → U +D − 1

same-label rewriting steps

U+D → DU+ UD+ → 0 D+U → D+ + U − 1

DD+D → D+D D+DD+ → D+D

UU+U → U+U U+UU+ → U+U

distinct-label rewriting steps

D+DU+ → 0 DU+U → 0 D+DU++U+ → 0

additional rewriting steps

Figure 1: A higher Gröbner basis for the loop Hecke category.

it suffices to show confluence of branchings that “overlap”; they are called critical branchings.
For instance, the branching in (21) is a critical branching. If all critical branchings confluate, we265

say that the algorithm critically confluates.
Linear combinations on which the algorithm terminates are called normal forms (or reduced);

if a word is a normal form, it is called a monomial normal form. In our setting, monomial normal
forms are precisely L̃H-reduced words; this is essentially the content of Lemma 2.3. To sum up:

SLOGAN (SEE THEOREM 2.10): If the algorithm in Figure 1 terminates and crit-270

ically confluates, then L̃H-reduced words define a hom-basis of the loop Hecke
category L̃H, showing Theorem 2.1.

As a byproduct, we get a solution to the word problem; that is, an algorithm that decides whether
two (linear combination of) words are equal in L̃H. This is the perspective of Gröbner bases. For
that reason, the oriented relations underpinning the algorithm may be called a higher Gröbner275

basis; that is, a Gröbner basis for a linear monoidal category.
In the terminology defined in Section 2.3.1:

Corollary 2.5. The higher linear rewriting system given in Figure 1 is a higher Gröbner basis
for the loop Hecke category.

2.3.1. A minimal review of higher linear rewriting theory. We give a minimal review of [32]280

suitable for our purpose. In the interest of length, we sometimes stay at a semi-formal level of
explanation. Experts are referred to Remark 2.11 for comparison with [32].

Fix k a commutative ring. Let
C = ⟨X0 | X1 | R⟩⊗,k

be a presented linear monoidal category. This means that:
• X0 is the set of generating objects. We write X∗

0 = ob(C) the set of objects generated by285

X0 under the tensor product ⊗.
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→ → 0 → → + −

same-label rewriting steps

→ → 0 → + −

→ → → →

distinct-label rewriting steps

→ 0 → 0 → 0

additional rewriting steps

Figure 2: The higher Gröbner basis from Figure 1 in diagrammatic notation.

• X1 is the set of generating morphisms, or generators, equipped with source and target
maps s, t : X1 → X0. A generator f ∈ X1 can be “extended” by identities of objects,
giving a whiskered generator ida ⊗f ⊗ idb for each a, b ∈ X∗

0. The source and target
maps extend to whiskered generators in the natural way, and whiskered generators with290

matching source and target can be composed.
For each pair of objects (a, b), we write X∗(a, b) the set of compositions of whiskered

generators with source a and target b, regarded up to the interchange law:

(f ⊗ idt(g)) ◦ (ids(f) ⊗g) = (idt(f)⊗g) ◦ (f ⊗ ids(g)).

An element of X∗(a, b) is called a monomial.
For each pair of objects (a, b), we write Xl(a, b) := ⟨X∗(a, b)⟩k, the free k-module295

generated by the set X∗(a, b). An element of Xl(a, b) is called a vector. We write X∗

(resp. Xl) the union of all the X∗(a, b)’s (resp. Xl(a, b)’s).
• R is a subset R ⊂ Xl(a, b).

In the case of the loop Hecke Category, we have X0 = {1}, X∗
0
∼= N and X1 = {D,U}. Mono-

mials are the same as words in symbolic notation, or diagrams in diagrammatic notation.300

Definition 2.6. In the context of linear monoidal categories, a higher linear rewriting system
is a presentation of a linear monoidal category, such that each relation comes equipped with an
orientation, and the source of each relation is a monomial.
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In our notation, this means that R is an abstract set equipped with source map s : R → X∗(a, b)
and target map s : R → Xl(a, b). We often abuse notation by writing R for the data (X0 | X1 | R),305

and abuse terminology by calling R a higher linear rewriting system.
Recall that a vector is a linear combination of monomials. For a vector v ∈ Xl, we write

supp(v) its support, that is, the set of monomials appearing in the linear decomposition of v.
Let (X0 | X1 | R) be a higher linear rewriting system. We define:

• A context is a “monomial with a hole”. In diagrammatic terms, a context Γ is:310

Γ =

f

g

a b

where a, b ∈ ob(C) are objects and f, g ∈ X∗ are monomials, suitably composable.
Given a context Γ, we can contextualize a generating rewriting step r : s(r) → t(r) as
Γ[r] : Γ[s(r)] → Γ[t(r)], provided source and target are compatible.

• A rewriting step is a rule of the form

λΓ[r] + v : λΓ[s(r)] + v → λΓ[t(r)] + v,

where λ ∈ k \ {0} is a non-zero scalar, Γ is a context, r ∈ R is a generating rewriting315

step and v ∈ Xl is a vector such that Γ[s(r)] /∈ supp(v). Again, it is implicit that Γ[r] and
v have the same source and target.

We say that λΓ[r]+v is a rewriting step of type r. We denote by R+ the set of rewriting
steps. Source and target maps naturally extend to R+.

For instance, in our example r = DD → D is a generating rewriting step, Γ = D+[−]U320

is a context and v = UD, v′ = D+DDU are vectors (in fact, monomials). We have that
Γ[r] = D+DDU → D+DU is a rewriting step, viewed a contextualization of r. The rule

Γ[r] + v = D+DDU + UD → D+DU + UD

is a rewriting step, but not the rule Γ[r]+v′ = D+DDU+D+DDU → D+DU+D+DDU , as it
does not verify the condition on the support. This condition is known as the positivity condition,
which explains the notation R+.325

Having defined rewriting steps, we have the following notions:
• A rewriting sequence is a finite sequence of rewriting steps (αi)1≤i≤N such that we have
s(αi+1) = t(αi);

• A branching7 is a pair of rewriting steps (α, β) with the same source;
• A confluence is a pair of rewriting sequences (α′, β′) with the same target;330

• A branching (α, β) is confluent (we say that it confluates) if it admits a confluence (α′, β′)
such that t(α) = s(α′) and t(β) = s(β′).

There is an intuitive notion of the multiset of generators in a given monomial; for instance,
the monomial (D ⊗ id1) ◦ (id1⊗D) has generators {D,D}. Given a rewriting step α = Γ[r]
for r ∈ R a generating rewriting step, we call the multiset of generators in s(r) the “generators335

7More precisely, this is the definition of a local branching; we abuse terminology in this review.
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associated to α”; they constitute the pattern on which we apply the rewriting rule. A branching
(α, β) is monomial if its source s(α) = s(β) is a monomial. If further α and β have generators
in common, we say that (α, β) is an overlapping branching. For instance, the branching given in
(21) is an overlapping branching, as the two rewriting steps have the generator “U” in the middle
of the monomial D+UD in common.340

Just like rewriting steps, a branching (α, β) can be contextualized as (Γ[α],Γ[β]); we say that
a branching is minimal if it is not the (non-trivial) contextualization of another branching.

Definition 2.7. In the context of linear monoidal categories, a critical branching is a minimal
overlapping branching.

Definition 2.8. A higher linear rewriting system is said to terminate if there is no infinite se-345

quence of rewriting steps, and to critically confluate if all critical branchings confluate.

Now we pause the review to emphasize a special feature of our setting. Note that for a generic
higher linear rewriting system, contextualization needs not be injective. That is, if f, g ∈ X∗ are
monomials and Γ is a context, having f ̸= g does not imply that Γ[f ] ̸= Γ[g]8. This is because
we consider monomials up to the interchange law, and as a context may connect two regions of350

a diagram, it may allow “floating morphisms” to move from one region to another. This fact is
in contrast with the classical settings of linear rewriting in associative algebras or commutative
algebras, where contexts are indeed injective. This makes the general theory of higher linear
rewriting subtler than its classical counterpart; see [32].

However, in the case of the loop Hecke category, contexts are injective: if f, g ∈ X∗ are355

monomials such that f ̸= g and Γ is a context, then Γ[f ] ̸= Γ[g]. This makes the theory similar
to the classical setting, and one finds a statement analogous to (say) Bergman’s diamond lemma.

Definition 2.9. In the context of higher linear rewriting system with injective contexts, A higher
Gröbner basis is a higher linear rewriting system that terminates and critically confluates.

If v ∈ Xl is a vector such that no rewriting step has source v, we say that v is a normal form;360

if further v ∈ X∗ is a monomial, then v is a monomial normal form.

Theorem 2.10. In the context of higher linear rewriting system with injective contexts, If R is a
higher Gröbner basis presenting a linear monoidal category C, monomial normal form defines a
hom-basis of C.

Remark 2.11 (comparison with [32]). In [32], the interchange law is made explicit as a modulo365

rule; in particular, X∗ denotes the set formal compositions of whiskered generators, not regarded
up to the interchange law. Also, the notion of higher Gröbner bases is only implicit in [32], and
equivalent to the notion of a convergent higher linear rewriting system modulo interchangers.

To view Theorem 2.10 as a corollary of the results of [32], one requires a strongly compatible
terminating order invariant under interchangers [32, Definition 3.58]. Since contexts are injec-370

tive, an order is strongly compatible if and only if it is compatible, we can choose the smallest
compatible order ≻R for each linear rewriting system R(a, b) [32, Definition 3.48]. Thanks to

8Here the inequality is an inequality as monomials in the free monoidal category X∗, not an inequality as elements
of the monoidal category presented by R.
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[32, Lemma 3.41], termination implies that ≻R is terminating. In other words, having injective
contexts put us in essentially the same setting as associative algebras; see [15].

2.3.2. A rewriting approach to the loop Hecke category. Let R be the higher linear rewriting sys-375

tem defined in Figure 1. We have already argued that R terminates (see the proof of Lemma 2.4)
and that monomial normal forms are precisely L̃H-reduced words (Lemma 2.3). To show Theo-
rem 2.1 using Theorem 2.10, it only remains to show that R is critically confluent. This splits in
two steps: enumerating all the critical branchings, and showing that they confluate. Both tasks
are cumbersome, but apart from the subtlety of indexed branchings explained below, essentially380

straightforward.
Enumeration is best done diagrammatically: one tries to match patterns up to rectilinear iso-

topies. See Section 2.1.2 and Figure 2 for the diagrammatics. We illustrate the process with
branchings (α, β) where α is of type U+D → DU+ and β is of type one of the distinct-label
rewriting steps. The full analysis is given in Appendix A.385

Lemma 2.12. The following is a complete list of critical branchings (α, β) where α is of type
U+D → DU+ and β is of type one of the distinct-label rewriting steps:

(22)

?

?
(23)

Here we describe a branching by its source, leaving its branches implicit. (Boxes with “?” will
be explained below.) For instance, the first diagram encodes the following branching:

0

Here we remind the reader that we view diagrams modulo the interchange law, so that we can390

slide the Ds past each other to be able to apply each of the two rewriting steps. This branching
is easily seen to confluate, as the top branch rewrites to zero using the rewriting step UD+ → 0.

Because we work modulo the interchange law, it may happen that an arbitrary diagram is
“stuck” in between two rewriting rules. This happens for instance in the first branching of (23),



A BASIS AND SCHUR–WEYL DUALITY FOR THE LOOP HECKE ALGEBRA 17

where395

?

denotes an arbitrary diagram. This is known as an indexed branching [16], a phenomenon typical
of higher rewriting. A priori, this leads to an infinite family of branchings. However, one can
always rewrite this diagram into a normal form. As we already know that normal forms are
precisely the reduced words, it is not hard to check the following:

Lemma 2.13. Denote an arbitrary diagram with a dashed box marked with “?”, different boxes400

indicating (a priori) different diagrams. We have that:

? rewrites as a linear combination of ? ,

?

?

and
?

?

,

We have an analogous statement when flipping all diagrams along the vertical axis.

This reduces the analysis of indexed branchings to three cases:

? = , ? = and ? = . (24)

Lemma 2.14. The critical branchings of Lemma 2.12 are confluent.

Proof. We have already seen that the first branching of (22) is confluent. The three other branch-405

ings of (22) are similar.
Consider the first branching of (23). As we argued above, it suffices to consider the three

cases in (24). In fact, if ? = then both branches rewrite to zero using the rewriting step
UD+ → 0. Moreover, if ? = then we can use the rewriting step U+D → DU+ on both
branches to slide this U downward, therefore reducing to the case ? = . In this latter case, we410

have:

+ −

+ −

+ −

The other indexed branching of (23) works similarly. The confluence of the remaining branchings
is straightforward to check. □
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3. CARDINALITY OF REDUCED WORDS AND DYCK PATHS

In this section, we prove that the set of reduced words Red(L̃Hn) (see Definition 1.5), i.e. the415

basis obtained in Theorem 2.1, has the conjectured cardinality.

Theorem 3.1. For each n ∈ N>0, the cardinality of Red(L̃Hn) is 1
2

(
2n
n

)
.

The proof of Theorem 3.1 will consist of two steps.
First, we rephrase the problem in terms of Dyck paths (Lemma 3.3). A Dyck path of semilength

n is a path in the lattice Z2 between (0, 0) and (n, n), consisting only of steps u := (0, 1) (u-step)420

and r := (1, 0) (r-step), and such that the path always lies above9 the diagonal d = {(x, y) | x =
y}. A Dyck path can be encoded as words in u and r, reading from left to right as the path goes
from (0, 0) to (n, n); see Figure 3 for an example.

We denote
Dyckn := {Dyck paths of semilength n}

and for a path P ∈ Dyckn and (a, b) ∈ Z2 we write (a, b) ∈ P whenever (a, b) lies on P .
In the first step we show that the L̃Hn-reduced words correspond to the following set.425

Definition 3.2. For n ∈ N:

D̃yckn :=
{
(P,Q) ∈ Dyckn ×Dyckn | (i, i) /∈ P ⇒ (i, i) and (i− 1, i− 1) ∈ Q

}
.

The second step of the proof of Theorem 3.1 will consist of relating D̃yckn to another set
whose cardinality is easily seen to be the desired one, see Lemma 3.4 below.

Recall that Sn(321) denotes the set of 321-avoiding permutations in the symmetric group Sn

and recall Red(L̃Hn) ⊂ Sn(321) × Sn(321) from Definition 1.5. Both 321-avoiding permuta-430

tions and Dyck paths count Catalan numbers. There are several bijections realizing that fact; for
our purpose, we are interested in the one given by Mansour, Deng and Du [20].

Although we do not use them explicitly, the references [34, 8] have been helpful guides to the
literature.

Lemma 3.3. The Mansour–Deng–Du bijection MDD: Dyckn → Sn(321) between Dyck paths435

and 321-avoiding permutations is such that for P ∈ Dyckn, we have (i, i) /∈ P if and only if
si ∈ MDD(P ). In particular, it induces a bijection:

Red(L̃Hn) ∼= D̃yckn.

Proof. We describe the bijection MDD: Dyckn → Sn(321), following [20, section 2.1]. An
example of the procedure is given in Figure 3, following [20, Fig. 1].

Let P ∈ Dyckn be a Dyck path. A cell is a size-one square in Z2 that lies between P and the440

diagonal d = {(x, y) | x = y}. We identify a cell with the coordinate (i, j) of its bottom-left
corner. We label each cell with its y-coordinate j. A cell is essential if (i, j − 1) → (i, j) and
(i, j) → (i, j + 1) are steps in P ; in other words, if the point (i, j) lies between two “up” steps.
Given an essential step (i, j), its zigzag strip is the set of cells adjacent to P between (i, j) and
(n, n).445

9One could equivalently define them to be paths below the diagonal d.
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y

x

1

2 2

5

6

7 7

8 8 8

9 9 9

MDD7−−−→ (σ1)(σ2)(σ7σ6σ5)(σ8σ7)(σ9σ8)

Figure 3: Example of the Mansour–Deng–Du’s bijection, following [20, Fig. 1]. The Dyck
path is uuurrruruuruuururrrr. Each cell is equipped with its label, that is, its y-coordinate.
Shadings emphasize the five zigzag strips.

Let Sn be the symmetric group on n − 1 generators σ1, . . . , σn−1. We associate an element
MDD(P ) ∈ Sn to the Dyck path P , by induction on the number of essential cells:

• If P has no essential cell, then P = (ru)n, and we associate the identity 1 ∈ Sn;
• Assume instead that P has essential cells. Let (i, j) be the rightmost essential cell in P

and letZ be its zigzag strip. Let {i, i+1, . . . , i+k} be the set of labels of cells inZ and let450

P ′ := P \Z be the Dyck path obtained from P by removing the zigzag strip Z. Note that
MDD(P ′) ∈ Sn is defined by induction. We set MDD(P ) = MDD(P ′)(σi+k . . . σi+1σi).

It was shown in [20, theorem 3] that this procedure defines a bijection between Dyck paths and
321-avoiding permutations. If P is a Dyck path, then (i, i) ∈ P if and only if no cell of P has i
as its y-coordinate, that is, if and only if σi /∈ MDD(P ). The lemma follows. □455

The second and last step of the proof of Theorem 3.1 consists in relating D̃yckn to another set
with the expected cardinality:

Lemma 3.4. Denote by Path(n, n − 1) the set of paths from (0, 1) to (n, n) consisting in steps
r = (1, 0) and u = (0, 1). There is a bijection:

D̃yckn
∼= Path(n, n− 1).

Proof. For each pair (P,Q) ∈ D̃yckn, we think of P as sitting above the diagonal d = {(x, y) |460

x = y}, and Q as sitting below the diagonal. We begin with a few definitions:
• If P (resp. Q) is incident to the diagonal at points (i, i) and (j, j) for 0 ≤ i, j ≤ n, we

write Pi,j (resp. Qi,j) the sub-Dyck path of P (resp. Q) from (i, i) to (j, j);
• A squiggly P -line is a sub-Dyck path of P of the form Pi,i+k = (ur)k for i ≥ 1;
• A maximal squiggly P -line is a squiggly P -line Pi,i+k maximal with respect to k, that is,465

such that neither Pi−1,i−1+k nor Pi,i+k+1 is a squiggly P -line;
We stress the condition i ≥ 1 for a squiggly P -line: a squiggly P -line never contains the first
u-step of P .
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φ : P3,4

P6,7

tr(Q2,4)

tr(Q5,7)

d

7→ φ(Q2,4)

φ(Q5,7)

l

Figure 4: Definition of φ(P,Q) for some pair of Dyck paths (P,Q) ∈ D̃yck7, with
P = uruurruruurrur depicted in black above the diagonal d andQ = rururruurururu de-
picted in blue below the diagonal. The two maximal squiggly P -lines of P are P3,4 and P6,7,
shaded in black; the associated sub-Dyck paths of Q are Q2,4 and Q5,7, respectively. Their
truncations tr(Q2,4) and tr(Q5,7) are shaded in blue. To obtain φ(P,Q), remove the first step
of P , remove P3,4 and P6,7 and add φ(Q2,4) and φ(Q5,7), obtained by shifting tr(Q2,4) and
tr(Q5,7) up by one step.

Given a maximal squiggly P -line Pi,j , the definition of D̃yckn implies that Qi−1,j is a sub-
Dyck path of Q, from (i − 1, i − 1) to (j, j). Indeed, on one hand Pi,j+1 is not a squiggly line,470

so either (j, j) = (n, n) or (j + 1, j + 1) /∈ P , and both situations imply that (j, j) ∈ Q; and
on the other hand, Pi−1,j is not a squiggly line, so either (i, i) = (1, 1) or (i − 1, i − 1) /∈ P ,
and both situations imply that (i − 1, i − 1) ∈ Q. Let tr(Qi−1,j) be the truncation of Qi−1,j

obtained by removing the first r-step and last u-step of Qi−1,j . Let φ(Qi−1,j) be the upward shift
of tr(Qi−1,j), obtained by shifting each step of tr(Qi−1,j) by one u-step.475

For (P,Q) ∈ D̃yckn, define φ(P,Q) ∈ Path(n, n − 1) by replacing each maximal squiggly
P -line Pi,j by φ(Qi−1,j) and removing the first u step of P . This defines a function:

φ : D̃yckn → Path(n, n− 1).

An example is given in Figure 4.
To recover (P,Q) from φ(P,Q), it suffices to recover which parts of φ(P,Q) come from P .

Let l = {(x, y) | y = x + 1} be the upward-shifted diagonal (in red in Figure 4). One checks480

that a step in φ(P,Q) is a part of P if and only if it belongs to a sub-path of the following form:

• the first step of φ(P,Q), if this first step is an r-step;
• a sub-path of the form uTr, where T is a sub-path that lies entirely above l.

This shows that φ admits an inverse and concludes. □

Proof of Theorem 3.1. It is clear that the cardinality of Path(n, n − 1) is
(
2n−1
n

)
. Combining485

Lemma 3.3 with Lemma 3.4 concludes. □
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4. BACKGROUND ON QUANTUM gl(1|1) AND ITS REPRESENTATIONS

For a comprehensive exposition of the Hopf superalgebra Uq(gl(1|1)) and its representations,
see Sections 2 and 3 of [29]. We stress that our objects are of “super” type and therefore signs
appear.490

4.1. Quantum gl(1|1). Fix a basis {ε1, ε2} of the weight lattice P = Z2 with a pairing given by

⟨εi, εj⟩ =


0 if i ̸= j,

1 if i = j = 1,

−1 if i = j = 2.

This allows us to define by duality the coweight lattice P ∗ = Z2 with basis {h1, h2}. We will
work over the field Q(q), but one can also work oven any field of characteristic zero with an
element q ̸= 0 which is not a root of unity.

Definition 4.1. The quantum superalgebra Uq is the associative unital Q(q)-superalgebra with495

odd generators E,F and even generators K±1
1 , K±1

2 , subject to the relations

K1K2 = K2K1, K±1
i K∓1

i = 1, (25)

K1E = qEK1, K2E = q−1EK2, (26)

K1F = q−1FK1, K2F = qFK2, (27)

EF + FE =
K −K−1

q − q−1
, E2 =F 2 = 0, (28)

where K = K1K2.

For h = n1h1 + n2h2 ∈ P ∗ we set Kh = Kn1
1 Kn2

2 , so that K1 = Kh1 , K2 = Kh2 and
K = Kh1+h2 (note that K is central). Note also that K−1

h = K−h. The superalgebra Uq is
actually a Hopf superalgebra, with comultiplication ∆, counit ε and antipode S given below.500

∆(Kh) = Kh ⊗Kh, ∆(E) = E ⊗K + 1⊗ E, ∆(F ) = F ⊗ 1 +K−1 ⊗ F, (29)

ϵ(Kh) = 1, ϵ(E) = 0, ϵ(F ) = 0, (30)

S(Kh) = K−1
h , S(E) = −EK−1, S(F ) = −KF. (31)

Here, the conventions for the coproduct differ slightly from [29, (2.9)] and are rather in line with
[36].

Define a bar involution on Uq by E = E, F = F , Kh = K−1
h and q = q−1. Then ∆ :=

(·)⊗ (·) ◦∆ ◦ (·) is also a coproduct with

∆(E) = E ⊗K−1 + 1⊗ E,

∆(F ) = F ⊗ 1 +K ⊗ F,

∆(K) = K ⊗K.

Denote |x| the parity of x ∈ Uq and set ∆op(x) =
∑

(−1)|x1|.|x2|x(2) ⊗ x(1) in the Sweedler505

notation.
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4.2. Representations. Set |ε1| = 0 and |ε2| = 1 and extend linearly to a map | • | : P → Z/2Z.
We only consider finite dimensional weight representations: these consist of finite dimensional
Uq-supermodules M =

⊕
λ∈P

Mλ with

Mλ = {v ∈M : Kh · v = q⟨h,λ⟩v}
and Mλ in (super-)degree |λ|

All simple representations of Uq are one- or two-dimensional and are indexed by their highest
weight λ ∈ P .

• If ⟨h1+h2, λ⟩ = 0 then the simple representation with highest weight λ is one-dimensional:510

Q(q)λ = Q(q)vλ, with |vλ| = |λ|, and

E.vλ = F.vλ = 0, Kh.vλ = q⟨h,λ⟩vλ.

• If ⟨h1+h2, λ⟩ ≠ 0 then the simple representation with highest weight λ is two-dimensional:
L(λ) = Q(q)v0λ ⊕Q(q)v1λ with |v0λ| = |λ|, |v1λ| = |λ|+ 1 and

E.v0λ = 0, F.v0λ = [⟨h1 + h2, λ⟩]v1λ, Kh.v
0
λ = q⟨h,λ⟩v0λ, (32)

E.v1λ = v0λ, F.v1λ = 0, Kh.v
1
λ = q⟨h,λ−ε1+ε2⟩v1λ. (33)

where [k] := qk−q−k

q−q−1 is the quantum number.

Example 4.2. The representation V := L(ε1) is called the vector representation. In this case515

⟨h1 + h2, ε1⟩ = 1 and hence also [⟨h1 + h2, ε1⟩] = 1. Furthermore q⟨h,λ−ε1+ε2⟩ = q⟨h,ε2⟩. To ease
notations, we will drop the subscript ε1 in the vectors v0ε1 and v1ε2 of the vector representation V .

The tensor product of two-dimensional simple representations follows an easy rule. If λ, µ ∈
P are such that ⟨h1 + h2, λ⟩, ⟨h1 + h2, µ⟩ and ⟨h1 + h2, λ+ µ⟩ are nonzero then

L(λ)⊗ L(µ) ∼= L(λ+ µ)⊕ L(λ+ µ− ε1 + ε2). (34)

If ⟨h1 + h2, λ+ µ⟩ = 0, then the representation L(λ)⊗ L(µ) is indecomposable.520

4.3. Braiding and Schur–Weyl duality.

4.3.1. The quasi-R-matrix and braiding. The monoidal category of finite dimensional weight
representations can be endowed with a braided structure. For this, we introduce the quasi-R-
matrix Θ defined by

Θ = 1⊗ 1− (q − q−1)E ⊗ F.

Since our coproduct is not the one of [29], we also have a different quasi-R-matrix. We also525

define a morphism of superalgebras Ψ: Uq ⊗ Uq → Uq ⊗ Uq by

Ψ(Kh ⊗ 1) = Kh ⊗ 1, Ψ(E ⊗ 1) = E ⊗K−1, Ψ(F ⊗ 1) = F ⊗K,

Ψ(1⊗Kh) = 1⊗Kh, Ψ(1⊗ E) = K−1 ⊗ E, Ψ(1⊗ F ) = K ⊗ F.

From here and onward, given an element x =
∑

i ai⊗bi ∈ U⊗2
q , we denote by x12 the element∑

i ai ⊗ bi ⊗ 1, by x13 the element
∑

i ai ⊗ 1⊗ bi and by x23 the element
∑

i 1⊗ ai ⊗ bi. We use
a similar notation for morphisms. The following are straightforward calculations.
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Proposition 4.3. Let x ∈ Uq. We have530

(1) Θ∆(x) = ∆(x)Θ,
(2) ∆(x) = Ψ(∆op(x)),
(3) ∆⊗ id(Θ) = Ψ23(Θ13)Θ23,
(4) id⊗∆(Θ) = Ψ12(Θ13)Θ12.

4.3.2. Braided structure on the category of representations. The above quasi-R-matrix Θ is used535

to endow the category of representations of Uq with a braided structure. ForM andN two weight
modules we define ΘM,N : M ⊗N →M ⊗N and fM,N : M ⊗N →M ⊗N by

ΘM,N(m⊗ n) = m⊗ n− (−1)|m|(q − q−1)E.m⊗ F.n,

for m ∈M and n ∈ N , and
fM,N(m⊗ n) = q(µ,ν)m⊗ n

if in addition m ∈Mµ and n ∈ Nν .

Proposition 4.4. We have that fM,N ◦ΘM,N intertwines ∆ and ∆op:540

∀x ∈ Uq, fM,N ◦ΘM,N ◦∆(x) = ∆op(x) ◦ fM,N ◦ΘM,N .

Proof. This follows from Proposition 4.3.(1) and Proposition 4.3.(2). □

Now set RM,N = fM,N ◦ ΘM,N and ŘM,N = τ ◦ fM,N ◦ ΘM,N , where τ is the super-twist,
which is defined by τ(m⊗ n) = (−1)|m|.|n|n⊗m.

Theorem 4.5. The map Ř is a braiding in the category of Uq weight representations.

Proof. The map ŘM,N is Uq-linear thanks to Proposition 4.4. The hexagon axioms follow from545

Proposition 4.3.(3) and Proposition 4.3.(4). □

4.3.3. The vector representation and a Schur–Weyl duality. Recall the vector representation V =
L(ε1). An iterated use of (34) yields

V ⊗m ∼=
m−1⊕
ℓ=0

L((m− ℓ)ε1 + ℓε2)
⊕(m−1

ℓ ). (35)

Thanks to the braiding, the representation V ⊗m is acted upon by the braid group on m strands,
and this action factors through the Hecke algebra Hq(Sm). To be more precise, the map550

σi 7→ q−1 id⊗i ⊗ŘV,V ⊗ id⊗(n−i−2))

defines an action of the braid group which factors through the relation σ2
i = (1− q2)σi + q2 id.

A Schur–Weyl duality between Uq and the Hecke algebra Hq(Sm) has been shown indepen-
dently by Moon [24] and Mitsuhashi [23].

Theorem 4.6. The algebra Uq and Hq(Sm) centralize each other in End(V ⊗m); that is, the
action of Hq(Sm) generates EndUq(V

⊗m) and the action of Uq generates EndHq(Sm)(V
⊗m).555
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More precisely, there is a decomposition

V ⊗m ∼=
m−1⊕
ℓ=1

L(mε1 − ℓ(ε1 − ε2))⊗ Shk(m−ℓ,ℓ+1) (36)

as Uq ⊗ Hq(Sm)-representation, where Shk(m−ℓ,ℓ+1) is the Specht module for the hook partition
with length m− ℓ and height ℓ+ 1.

To complete the picture, we exhibit the matrix of q−1ŘV,V on the basis

{v0 ⊗ v0, v1 ⊗ v0, q−1v0 ⊗ v1, q−1v1 ⊗ v1}.
We recover the matrix for the Burau representation of the braid group (with t = q−2):560 

1 0 0 0
0 (1− t) t 0
0 1 0 0
0 0 0 −t

 . (37)

Note that the chosen basis is the tensor product of two different bases of V : {v0, v1} and
{v0, q−1v1}.

5. A SCHUR–WEYL DUALITY WITH Uq(gl(1|1))≤0

The goal is now to enhance the Schur–Weyl duality between the Hecke algebra and Uq to a
Schur–Weyl duality involving the loop Hecke algebra. We denote by U≤0

q the subalgebra of Uq565

generated by K1, K2 and F .

5.1. An LBn-representation via an R-matrix for U≤0
q . Inspired by the notion of a twist in a

quasi-triangular Hopf algebra, as introduced in [27], we define, for any two Uq weight modules
M and N , a map SM,N : M ⊗N →M ⊗N by

SM,N(m⊗ n) = qµ1ν2−µ2ν1m⊗ n,

where m ∈Mµ and N ∈ Nν .570

Proposition 5.1. We have that SM,N intertwines ∆ and ∆op on U≤0
q :

∀x ∈ U≤0
q , SM,N ◦∆(x) = ∆op(x) ◦ SM,N .

Proof. The calculations for x = K1 and x = K2 are trivial. For x = F , m ∈ Mµ and n ∈ Nν ,
we have:

SM,N(∆(F ) ·m⊗ n) = SM,N(Fm⊗ n+ (−1)|m|q−µ1−µ2m⊗ Fn)

= q(µ1−1)ν2−(µ2+1)ν1Fm⊗ n+ (−1)|m|qµ1(ν2+1)−µ2(ν1−1)−µ1−µ2m⊗ Fn

= qµ1ν2−µ2ν1(q−ν1−ν2Fm⊗ n+ (−1)|m|m⊗ Fn)

= ∆op(F )(SM,N(m⊗ n)),

the equalities being obtained from the definition of SM,N and of ∆. □
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Remark 5.2. The map SM,N does not intertwine ∆ and ∆op on Uq. One may check that SM,N ◦575

∆(E) ̸= ∆op(E) ◦ SM,N but SM,N ◦∆op(E) = ∆(E) ◦ SM,N .

We now set ŠM,N = τ ◦ SM,N , where τ is the super-twist, as usual.

Proposition 5.3. The map Š is a symmetric braiding on the category of U≤0
q weight representa-

tions.

Proof. It remains to check the hexagon axioms and that ŠN,M ◦ ŠM,N is the identity. Given three580

weight modules M,N and L and m ∈Mµ, n ∈ Nν and ℓ ∈ Lλ, we have

ŠM⊗N,L(m⊗ n⊗ ℓ) = q(µ1+ν1)λ2−(µ2+ν2)λ1(−1)(|m|+|n|)|ℓ|ℓ⊗m⊗ n,

and

(ŠM,L ⊗ idN) ◦ (idM ⊗ŠN,L)(m⊗ n⊗ ℓ) = qν1λ2−ν2λ1(−1)|n||ℓ|ŠM,L(m⊗ ℓ)⊗ n

= qν1λ2−ν2λ1+µ1λ2−µ2λ1(−1)|n||ℓ|+|m||ℓ|ℓ⊗m⊗ n,

which shows that the hexagon axiom ŠM⊗N,L = (ŠM,L ⊗ idN) ◦ (idM ⊗ŠN,L) holds. The proof
for the second hexagon axiom is similar. The axiom of symmetry is easy and omitted. □

The goal is now to show some mixed relations satisfied by Ř and Š.585

Proposition 5.4. Given three U≤0
q weight modules M,N and L, we have

(1) (ŠN,L⊗idM)◦(idN ⊗ŘM,L)◦(ŘM,N⊗idL) = (idL⊗ŘM,N)◦(ŘM,L⊗idN)◦(idM ⊗ŠN,L),
(2) (ŘN,L⊗idM)◦(idN ⊗ŠM,L)◦(ŠM,N⊗idL) = (idL ⊗ŠM,N)◦(ŠM,L⊗idN)◦(idM ⊗ŘN,L).

Proof. We start by noticing that

(idM ⊗ŠN,L) ◦ΘM,N⊗L = ΘM,L⊗N ◦ (idM ⊗ŠN,L). (38)

Indeed, the maps ΘM,N⊗L and ΘM,L⊗N are induced by the action of 1⊗∆(1)−(q−q−1)E⊗∆(F ),590

and Proposition 5.1 implies that, for any m ∈M,n ∈ N and ℓ ∈ L,

(idM ⊗SN,L) ◦ΘM,N⊗L(m⊗ n⊗ ℓ)

= m⊗ SN,L(n⊗ ℓ)− (q − q−1)E ⊗∆op(F ) · (m⊗ SN,L(n⊗ ℓ)).

It remains to apply the super-twist τ23 in order to obtain (38).
Now, we have

(ŠN,L ⊗ idM) ◦ ŘM,N⊗L = τ23 ◦ τ12 ◦ (idM ⊗ŠN,L) ◦ fM,N⊗L ◦ΘM,N⊗L

= τ23 ◦ τ12 ◦ fM,N⊗L ◦ (idM ⊗ŠN,L) ◦ΘM,N⊗L

= τ23 ◦ τ12 ◦ fM,L⊗N ◦ΘM,L⊗N ◦ (idM ⊗ŠN,L)

= ŘM,N⊗L ◦ (idM ⊗ŠN,L),

the second equality is due to the fact that idM ⊗SN⊗L and fM,N⊗L commutes and the third
equality is a consequence of (38). We finally obtain (1) using the hexagon axiom for the braiding595

Ř. The proof of (2) is similar and ommited. □
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Now consider the assignment

Ψn : LBn → End
U≤0
q
(V ⊗n) :

{
σi 7→ id⊗i−1

V ⊗ŘV,V ⊗ id
⊗(n−i−1
V

ρi 7→ id⊗i−1
V ⊗ŠV,V ⊗ id

⊗(n−i−1)
V

(39)

Theorem 5.5. The triple (V, Ř, Š) is a loop braided vector space, i.e. the map Ψn constructed
in (39) defines a well-defined representation of LBn. Moreover, Ψn factors through LHn for
t = q−2.600

Proof. That Ψn is a well-defined map on LBn follows from Theorem 4.5, Proposition 5.3 and
Proposition 5.4 applied to the vector representation V .

To see that Ψn factors through LHn, we need to check the quadratic relations, which we
compute directly on V ⊗ V . In the basis

{v0 ⊗ v0, v1 ⊗ v0 + q−1v0 ⊗ v1, v1 ⊗ v0 − qv0 ⊗ v1, v1 ⊗ v1}
of V ⊗ V , which is a basis realizing the decomposition V ⊗ V ≃ L(2ε1)⊕ L(ε1 − ε2), we find605

that the matrices of q−1ŘV,V and of ŠV,V are respectively
1 0 0 0
0 1 0 0
0 0 −q−2 0
0 0 0 −q−2

 and


1 0 0 0
0 1 −q(q − q−1) 0
0 0 −1 0
0 0 0 −1


The quadratic relations then follow immediately from a matrix calculation. □

Remark 5.6. The representation Fn defined in (13) (by [12]) coincides with Ψn. Indeed, the
basis {v0ε1 ⊗ v0ε1 , v

1
ε1

⊗ v0ε1 , q
−1v0ε1 ⊗ v1ε1 , q

−1v1ε1 ⊗ v1ε1} of V ⊗ V , the respective matrices of
q−1ŘV,V and ŠV,V are given by610 

1 0 0 0
0 (1− q−2) q−2 0
0 1 0 0
0 0 0 −q−2

 and


1 0 0 0
0 0 1 0
0 1 0 1
0 0 0 −1

 .

These matrices correspond to the matrices in [12] for t = q−2.

5.2. Schur–Weyl duality for the loop Hecke algebra. Recall that V denotes the vector rep-
resentation L(ϵ1) of Uq. The aim of the remainder of this section is to obtain the following
Schur–Weyl type statement.

Theorem 5.7. If q ̸= ±1, then the morphism Ψn defined in (39) yields a Q(q)-algebra isomor-615

phism from LHn to End
U≤0
q
(V ⊗n).

To obtain Theorem 5.7 we need to compute dimEnd
U≤0
q
(V ⊗n). To do so we will decompose

End
U≤0
q
(V ⊗n) in smaller pieces which will be proven in Section 6.1 to be meaningful pieces of

the Wedderburn–Mal’cev decomposition of the endomorphism ring.
First we note that the decomposition in (35) is not one of simple U≤0

q -modules as each L((m−620

ℓ)ε1 + ℓε2) has a submodule:
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Lemma 5.8. For any 0 ≤ ℓ ≤ n− 1 the U≤0
q -modules L((n− ℓ)ε1 + ℓε2) are indecomposable,

but non-semisimple. They have a composition series

{0} ⊊ Q(q)v1ε ⊊ L((n− ℓ)ε1 + ℓε2).

Furthermore, the basis elements v0ε and v1ε have weight (n − ℓ)ε1 + ℓε2, resp. (n − ℓ − 1)ε1 +
(ℓ+ 1)ε2.

Proof. The weights of v0ε and v1ε are recorded in (32) and (33). From these equations we also
see that Q(q)v1ε is indeed a U≤0

q -submodule. As it is 1-dimensional it is simple. Moreover,625

a direct computation yields that it is the unique submodule and hence it equals the socle of
L((n− ℓ)ϵ1 + ℓϵ2) which consequently is not semisimple, but indecomposable. □

(AL: It feels more natural to have some statement classifying the simple weight U≤0
q -

modules (we also need to keep the wording module or representation throughout). Since
F 2 = 0, it is easily seen that the simple weight modules are of 1-dimensional, and therefore630

labeled by their weights. Once this done, we go through the restriction of the simple Uq-
modules, and we give the (obvious) composition factors, since we will use it. Then, we can
turn to the restriction of the tensor space.)

For ease of notation we denote for the remainder of the paper

U≤0
q := Uq(gl(1|1))≤0 and L(ℓ) := L((n− ℓ)ε1 + ℓε2)). (40)

Using (35) we obtain that635

End
U≤0
q
(V ⊗n) =

⊕
0≤ℓ,k≤n−1

Hom
U≤0
q

(L(ℓ), L(k))⊕(
n−1
ℓ )(n−1

k ) . (41)

We will now determine the dimension of each summand in (41). Firstly, Lemma 5.8 tells that
L((n−ℓ)ε1+ℓε2) and L((n−k)ε1+kε2) have no common weight if |k−ℓ| > 1. More precisely,
then their composition series has no common factor and hence the Hom-space is zero. Thus it
remains to consider the case that |k − ℓ| ≤ 1.

Proposition 5.9. For any n ∈ N≥1 one has that

End
U≤0
q
(V ⊗n) =

n−1⊕
ℓ=0

End
U≤0
q
(L(ℓ))⊕(

n−1
ℓ )

2

⊕
n−1⊕
ℓ=1

Hom
U≤0
q

(L(ℓ), L(ℓ− 1))⊕(
n−1
ℓ )(n−1

ℓ−1)

wtih every summand a 1-dimensional Q(q)-vector space. Furthermore:640

dimEnd
U≤0
q
(V ⊗n) =

(
2n− 1

n

)
.

Proof. Consider a summand Hom
U≤0
q

(L(ℓ), L(k)) from (41). First suppose that k = ℓ, i.e.
consider End

U≤0
q
(L(ℓ)). As they are endomorphisms of multiplicity-free finite length modules

we obtain that
End

U≤0
q
(L(ℓ)) = Q(q)Id. (42)

Next, let k = ℓ + 1. By Lemma 5.8, L(ℓ) has basis vectors v0ℓ (weight (n − ℓ)ε1 + ℓε2)
and v1ℓ (weight (n − ℓ − 1)ε1 + (ℓ + 1)ε2). Similarly L(ℓ + 1) has basis vectors v0ℓ+1 (weight645
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(n − ℓ − 1)ε1 + (ℓ + 1)ε2) and v1ℓ+1 (weight (n − ℓ − 2)ε1 + (ℓ + 2)ε2). Therefore, a weight
argument shows that a non-trivial φ ∈ Hom

U≤0
q

(L(ℓ), L(ℓ+ 1)) satisfy φ(v0ℓ ) = 0 and should
send v1ℓ onto a multiple of v0ℓ+1. However recall that Q(q)v1ℓ = Rad(L(ℓ)). Since radicals are
invariant, one should have that φ(v1ℓ ) ∈ Rad(L(ℓ+ 1)) = Q(q)v1ℓ+1. In conclusion, φ = 0.

Finally let k = ℓ−1. Now L(ℓ−1) basis vectors v0ℓ−1 (weight (n−ℓ+1)ε1+(ℓ−1)ε2) and v1ℓ−1650

(weight (n−ℓ)ε1+ℓε2). Again by a weight argument a non-trivial φ ∈ Hom
U≤0
q

(L(ℓ), L(ℓ− 1))

must satisfy φ(v1ℓ ) = 0 and φ(v0ℓ ) ∈ Q(q)v1ℓ−1. This time the latter is no contradiction with
preservation of the radical. In conclusion

Hom
U≤0
q

(L(ℓ), L(ℓ− 1)) =
{
φ :

{
v0ℓ 7→ z.v1ℓ−1

v1ℓ 7→ 0
| z ∈ Q(q)

}
∼= Q(q) (43)

which is 1-dimensional, as desired.
It remains to prove the moreover part. This readily follows by taking dimensions in the vector

space decomposition just obtained:

dimEnd
U≤0
q
(V ⊗n) =

n−1∑
ℓ=0

(
n− 1

ℓ

)2

+
n−1∑
ℓ=1

(
n− 1

ℓ

)
.

(
n− 1

ℓ− 1

)
=

(
2(n− 1)

n− 1

)
+

(
2(n− 1)

n− 2

)
where in the second equation we have used well-known binomial coefficient identities. It is also655

classical that the last expression equals
(
2n−1
n

)
, finishing the proof. □

We have now the necessary tools to conclude.

Proof of Theorem 5.7. By Theorem 5.5 the representation Ψn coincides with Fn defined in (13).
It was proven in [12, Theorem 5.8] that dim im(Fn) =

(
2n−1
n

)
which equals dimEnd

U≤0
q
(V ⊗n)

by Proposition 5.9. Hence Ψn = Fn is surjective. Now if q ̸= ±1, then LHn is isomorphic660

to L̃Hn by Theorem 7.1. Solely using that the L̃Hn-reduced words Red(L̃Hn) generate L̃Hn

(cf. Lemma 2.4), we obtain that dimLHn ≤ |Red(L̃Hn)| with the upper bound equal to
(
2n−1
n

)
by Theorem 3.1. Thus comparing dimensions with the co-domain we see that Ψn must be an
isomorphism. □

Remark 5.10. Note that the proof Theorem 5.7 yields an alternative way to obtain that the L̃Hn-665

reduced words are linearly independent.

6. A RING AND REPRESENTATION THEORETICAL PERSPECTIVE ON LOOP HECKE ALGEBRA

In this section we make use of Theorem 5.7 to study the loop Hecke algebra in more detail
through the isomorphic algebra End

U≤0
q
(V ⊗n).

6.1. Description of the semisimple part and Jacobson radical. If A is a finite dimensional670

algebra over a perfect field k, then the theorem of Wedderburn–Mal’cev yields that there exists a
maximal semisimple subalgebra Bss in A such that

A ∼= Bss ⊕ Jac(A) (44)

as a k-vector space. In (44) Jac(A) denotes the Jacobson radical of A and Bss is unique up to
an algebra automorphism of A. The aim of this section is to describe the constituents of (44)



A BASIS AND SCHUR–WEYL DUALITY FOR THE LOOP HECKE ALGEBRA 29

for the loop Hecke algebra. More precisely, we will use Theorem 5.7 to instead describe the675

Wedderburn–Mal’cev decomposition of the isomorphic algebra End
U≤0
q
(V ⊗n).

6.1.1. The Wedderburn–Mal’cev decomposition and application. To start, recall the notations
U≤0
q and L(ℓ) from (40) and consider the following constituents of the decomposition obtained

in Proposition 5.9:

Nℓ := End
U≤0
q
(L(ℓ))⊕(

n−1
ℓ )

2

and Rℓ′ := Hom
U≤0
q
(L(ℓ′), L(ℓ′ − 1))⊕(

n−1
ℓ′ )(

n−1
ℓ′−1).

Theorem 6.1. For any n ∈ N≥1 and with notations as above, we have that:

(1)
⊕n−1

ℓ=0 Nℓ is a maximal semisimple subalgebra with Nℓ a simple factor10,
(2)

⊕n−1
ℓ=0 Nℓ = EndUq(V

⊗n) ∼= Super Temperley–Lieb algebra,
(3) J

(
End

U≤0
q
(V ⊗n)

)
=

⊕n−1
ℓ′=1Rℓ′ and has square-zero11680

Moreover, for 0 ≤ i, j ≤ n− 1, denoting by ei the identity of Ni, we have:

ej EndU≤0
q
(V ⊗n)ei =

 Ni if j = i,
Ri if j = i− 1,
0 else.

Before proving Theorem 6.1 we discuss some consequences.

Remark 6.2. A consequence of Theorem 6.1 and Theorem 4.6 is that the Hecke algebra Hn(Sn)
surjects onto End

U≤0
q
(V ⊗n)/J

(
End

U≤0
q
(V ⊗n)

)
. Now recalling that the Jacobson radical is pre-

served under morphisms and using Theorem 5.7 we obtain that

Hq(Sn) ↠ LHn/J(LHn)

when t ̸= ±1. It would be interesting to have an explicit description of a basis for the pieces
Ψ−1(Ni) and Ψ−1(Ri), i.e. to describe for every L̃Hn-reduced word where its image under Ψ
lives. Note that it follows from Theorem 4.5 that

Ψ(σℓ) ∈ Nℓ

for every 0 ≤ ℓ ≤ n− 1.

The elements {e0, . . . , en−1} form a set of orthogonal idempotents that add up to the identity:
idV ⊗n = e0 + · · ·+ en−1. Thanks to this one can consider the associated Peirce decomposition

End
U≤0
q
(V ⊗n) =

⊕
0≤i,j≤n−1

ej EndU≤0
q
(V ⊗n)ei

which allows one to consider End
U≤0
q
(V ⊗n) as a n × n matrix algebra with ej EndU≤0

q
(V ⊗n)ei

as entry (i, j). Associated with this one can consider the n×n-matrix M = (Mi,j)0≤i,j≤n−1 with

Mi,j := dim ej EndU≤0
q
(V ⊗n)ei.

10That Nℓ is a simple factor means that Nℓ is a simple ring and a two-sided ideal of
⊕n−1

ℓ=0 Nℓ.
11This means that J

(
End

U
≤0
q

(V ⊗n)
)2

= 0, i.e. the product of any two elements is zero.
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In [12] the matrix M is referred to as encoding the “structure of the algebra”. In [12, Section 6
& Conjecture 6.4] a conjecture was formulated for the form of M . As a corollary of the above
we now confirm their conjecture.685

Corollary 6.3. Denote, for 0 ≤ ℓ ≤ n−1, by wℓ :=
(
n−1
ℓ

)
the ℓth entry of the nth row of Pascal’s

triangle. With notations as above, we have that

M =



w2
0 0 0 · · · 0 0

w0w1 w2
1 0 · · · 0 0

0 w1w2 w2
2

. . .
... 0

0 0
. . .

. . . 0
...

...
. . .

. . . w2
n−2 0

0 · · · 0 wn−2wn−1 w2
n−1


= D.


1
1 1

1 1
1 1

. . .
. . .

 .D

where D := diag(w0, · · · , wn−1).

The second equality in Corollary 6.3 was added as it is in this form that Damiani–Martin–
Rowell formulated their conjecture, see matrix Mp

n in [12, Section 6].

Proof of Corollary 6.3. In Theorem 6.1 the form of the corners ej EndU≤0
q
(V ⊗n)ei has been de-

scribed. Now recall that by Proposition 5.9

dimEnd
U≤0
q
(L(ℓ)) = dimHom

U≤0
q
(L(ℓ′), L(ℓ′ − 1)) = 1

for all 0 ≤ ℓ ≤ n− 1 and 1 ≤ ℓ′ ≤ n− 1. Hence dimNℓ =
(
n−1
ℓ

)2
and dimRℓ′ =

(
n−1
ℓ′

)(
n−1
ℓ′−1

)
,

which proves the first equality. The second equality is a direct matrix multiplication. □690

Remark 6.4. In [12, Conjecture 6.4] the form of the matrix M was only implicitly formulated
for the loop Hecke algebra LHn itself. Instead, they conjectured that the structure of certain
quotients of LHn was given by some truncations of the matrix M . In Section 7.2, we will prove
that, unexpectedly, these quotients are trivial. Thus, the conjectured form is valid solely when no
quotient is applied.695

6.1.2. Towards the proof of Theorem 6.1. To start, recall (35) saying that

V ⊗n ∼=
n−1⊕
ℓ=0

L((n− ℓ)ε1 + ℓε2)
⊕(n−1

ℓ ).

For the remaining of the section we order the copies of V ⊗n from 1 till
(
n−1
ℓ

)
. Accordingly

denote
Lℓ,k := kth copy of L((n− ℓ)ε1 + ℓε2) in V ⊗n

with 1 ≤ k ≤
(
n−1
ℓ

)
. Note that Proposition 5.9 now in fact tells that

End
U≤0
q
(V ⊗n) =

n−1⊕
ℓ=0

⊕
1≤k,k′≤(n−1

ℓ )

Hom
U≤0
q
(Lℓ,k, Lℓ,k′)⊕

n−1⊕
ℓ′=1

(n−1
ℓ′ )⊕

r=1

(n−1
ℓ′−1)⊕
r′=1

Hom
U≤0
q
(Lℓ′,r, Lℓ′−1,r′)

(45)
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Now for φ ∈ Hom
U≤0
q
(Lℓ,k, Lℓ,k′) and ψ ∈ Hom

U≤0
q
(Lℓ′,r, Lℓ′−1,r′) we directly see from (45)

that
φ ◦ ψ ̸= 0 ⇔ ℓ = ℓ′ − 1 and k = r′. (46)

In that case φ ◦ ψ ∈ Hom
U≤0
q
(Lℓ′,r, Lℓ′−1,k′). Similarly,

ψ ◦ φ ̸= 0 ⇔ ℓ′ = ℓ and r = k′ (47)

in which case ψ ◦ φ ∈ Hom
U≤0
q
(Lℓ,k, Lℓ−1,r′).700

Proof of Theorem 6.1. In terms of the notations above we have by definition that

Nℓ =
⊕

1≤k,k′≤(n−1
ℓ )

Hom
U≤0
q
(Lℓ,k, Lℓ,k′) and Rℓ′ =

(n−1
ℓ′ )⊕

r=1

(n−1
ℓ′−1)⊕
r′=1

Hom
U≤0
q
(Lℓ′,r, Lℓ′−1,r′).

From (46) and (47) it directly follows that
⊕n−1

ℓ′=1Rℓ′ is a two-sided ideal of End
U≤0
q
(V ⊗n) whose

square is zero (i.e. the product of any two elements is zero). Those equations also imply that
Nℓ1 .Nℓ2 = 0 for 0 ≤ ℓ1 ̸= ℓ2 ≤ n − 1. Hence the vector space decomposition

⊕n−1
ℓ=0 Nℓ

is also one of rings and in particular Nℓ is a two-sided ideal of
⊕n−1

ℓ=0 Nℓ. Since all spaces
Hom

U≤0
q
(Lℓ,k, Lℓ,k′) are 1-dimensional, by Proposition 5.9, (46) and (47) also imply that the705

two-sided ideal (inside
⊕n−1

ℓ=0 Nℓ) generated by any 0 ̸= φ ∈ Hom
U≤0
q
(Lℓ,k, Lℓ,k′) is the full of

Nℓ. From this we infer that Nℓ is a simple ring, finishing the proof of part (1) of the statement,
except the maximality. The latter will follow if we prove that the vector space complement⊕n−1

ℓ′=1Rℓ′ , see (45), equals the Jacobson radical.
Next note that since

⊕n−1
ℓ′=1Rℓ′ is a nil-ideal, being of square-zero, it is contained in the710

Jacobson radical. Recall that for Artinian algebras the Jacobson radical is also characterized
as the smallest (two-sided) ideal such that the corresponding quotient is semisimple. Now as
End

U≤0
q
(V ⊗n)/

⊕n−1
ℓ′=1Rℓ′

∼=
⊕n−1

ℓ=0 Nℓ is semisimple, by the statement obtained earlier, we ob-
tain the other inclusion and finishing both statements (3) and (1).

Concerning the moreover part, note that

ei =
∑

1≤k,k′≤(n−1
ℓ )

idk,k′

where idk,k′ is the canonical identification of Lℓ,k and Lℓ,k′ . With this description and using (46)715

and (47) the moreover part follows directly.
Finally, for statement (2) note that (42) shows that End

U≤0
q
(L(ℓ)) = EndUq(L(ℓ)). Since the

modules L(ℓ) are simple Uq-modules, the latter and (35) implies that
n−1⊕
ℓ=0

Nℓ =
n−1⊕
ℓ=0

EndUq(L(ℓ)
⊕(n−1

ℓ )
2

) = EndUq(V
⊗n).

Now it was proven in [28, Section 4] that EndUq(V
⊗n) is isomorphic to the super Temperley–

Lieb algebra. □
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6.2. A description of the Ext-quiver and Cartan matrix. Consider the primitive central idem-
potents {e0, . . . , en−1} described in Theorem 6.1. As the idempotents are orthogonal and 1 =∑n−1

i=0 ei one has the associated decomposition in blocks:

End
U≤0
q
(V ⊗n) =

n−1⊕
i=0

End
U≤0
q
(V ⊗n).ei

A block End
U≤0
q
(V ⊗n).ei can be further decomposed into

End
U≤0
q
(V ⊗n).ei = P⊕mi

i

where {P0, . . . , Pn−1} are representatives of the isomorphism classses of indecomposable pro-
jective (left) modules. Their head Pi/J(Pi) is simple which we denote by Si. Below, in Propo-720

sition 6.6, we will describe these modules explicitly and also the multiplicities mi.
For a finite dimensional algebra A, the Cartan matrix C(A) is an n× n-matrix whose ith row

encode the multiplicity of each simple module in the composition series of Pi:

C(A)i,j := dimHomA(Pj, Pi).

The Ext-quiver QA encode a complementary piece of information: its vertices are given by the
simple modules Si and

#Si → Sj := dimExt1A(Si, Sj).

In [12, Theorem 5.7 & Corollary 6.1] both were described for the algebra SPn := Fn(k[LBn])
with Fn defined in (13). When t ̸= ±1 it follows from Theorem 5.5 and Theorem 5.7 that
SPn

∼= End
U≤0
q
(V ⊗n) and hence their description also hold for the latter. We now give a direct

proof, for any t, for the Cartan matrix and Ext-quiver of End
U≤0
q
(V ⊗n).725

Theorem 6.5. Let A := End
U≤0
q
(V ⊗n) for n ∈ N≥1. Then the Cartan matrix is

C(A) =


1
1 1

1 1
. . .

. . .


and the Ext-quiver QA with relations is the An-quiver with the composition of two arrows zero:

n− 1 n− 2 n− 3 · · · 2 1 0

The proof of Theorem 6.5 will quickly follow once we constructed explicitly the simple and
indecomposable projective modules. To do so, we use the notations from Section 6.1.2 and the
statements obtained there.730

Define for 1 ≤ ℓ ≤ n− 1 and 1 ≤ k ≤
(
n−1
ℓ

)
:

Sℓ,k :=

(n−1
ℓ−1)⊕
r=1

Hom
U≤0
q
(Lℓ,k, Lℓ−1,r) and Pℓ,k := Sℓ,k ⊕

(n−1
ℓ )⊕

k′=1

Hom
U≤0
q
(Lℓ,k, Lℓ,k′) (48)
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If ℓ = 0, then
(
n−1
ℓ

)
= 1 and we define P0,1 := Hom

U≤0
q
(L0,1, L0,1) and S0,1 = {0}. Note that,

in terms of Theorem 6.1, Sℓ,k correspond to all endomorphisms in the radical which are zero
outside a fixed Lℓ,k, and Pℓ,k to all morphisms in End

U≤0
q
(V ⊗n) outside a fixed Lℓ,k.

Proposition 6.6. With notations as above we have:735

(1) Pℓ,k is an indecomposable projective module and it is cyclic,
(2) {0} ⊆ Sℓ,k ⊊ Pℓ,k is a composition series,
(3) Jac(Pℓ,k) = Soc(Pℓ,k) = Sℓ,k,
(4) Pℓ1,k1

∼= Pℓ2,k2 if and only if ℓ1 = ℓ2,
(5) End

U≤0
q
(V ⊗n).eℓ ∼= P⊕mℓ

ℓ,1 with mℓ =
(
n−1
ℓ

)
.740

Proof. Using (46) and (47) it is easily seen that Sℓ,k and Pℓ,k are left modules. Furthermore by
construction, see (45),

End
U≤0
q
(V ⊗n) =

n−1⊕
ℓ=1

(n−1
ℓ )⊕

k=1

Pℓ,k (49)

Thus the complement of Pℓ,k in End
U≤0
q
(V ⊗n) is also a left-module and hence Pℓ,k is pro-

jective. Next, again using (46) and (47) is readily verified that Sℓ,k is simple and the only sub-
module of Pℓ,k. In particular Pℓ,k is indecomposable. Furthermore via analogue computations745

one sees that Pℓ,k/Sℓ,k is simple and that Pℓ,k is generated as left module by any 0 ̸= φ ∈
Hom

U≤0
q
(Lℓ,k, Lℓ,k′) (for any k′), finishing the proof of statement (1) and (2). Statement (3) fol-

lows from the second. Next, assertion (4) holds by definition and the explicit description of the
hom-spaces obtained in (43) and (42). Finally, statement (5) follows from the fourth and that by

construction End
U≤0
q
(V ⊗n)eℓ =

⊕(n−1
ℓ )

k=1 Pℓ,k. □750

We now have the necessary tools to prove the main result of this section.

Proof of Theorem 6.5. As representatives for the indecomposable projective modules we take the
modules Pℓ,1 which we denote by Pℓ for ease of notation.

Consider 0 ≤ i, j ≤ n − 1. We want to compute Hom
U≤0
q
(Pi, Pj). Since the modules Pℓ

are cyclic generated by any 0 ̸= φℓ ∈ Hom
U≤0
q
(Lℓ,1, Lℓ,k′), it is enough to determine the im-755

age of φi. From (46), (47) and the composition series in Proposition 6.6 it now follows that
Hom

U≤0
q
(Pi, Pj) = 0 if i ̸= j or j − 1. It also implies that if i = j, then End(Pi) consists of

scalar endomorphisms. Finally if i = j−1, then any morphism is of the form ψ∗ = (−)◦ψ with
ψ ∈ Hom

U≤0
q
(Lℓ,1, Lℓ−1,1). Note that

ψ∗(Soc(Pj−1)) = 0 and ψ∗(Pj−1) = Jac(Pi). (50)

Altogether we obtain the stated form of the Cartan matrix.760

For the Ext-quiver we need to compute the values dimExt1(Si,1, Sj,1). Now recall that

dimExt1(Si,1, Sj,1) = dimHom
U≤0
q
(Pj, Jac(Pi)/Jac(Pi)

2).

From Proposition 6.6 we know that Jac(Pi) = Si,1 and consequently Jac(Pi)
2 = {0}. In

particular we need to count morphisms from Pj to Pi. From the computations earlier, mind the
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switch in the role of i and j, we know that this forces j = i or i− 1. If j = i the endomorphisms
are scalar multiples of the identity and hence the image is not in Jac(Pi). If j = i− 1, then (50)
yields that dimHom

U≤0
q
(Pj, Jac(Pi)) = 1, finishing the proof. □765

Remark 6.7. One could also have worked with right modules. In that case one has the analogue
of Proposition 6.6 but for the following right modules:

S
(r)
ℓ−1,k′ :=

(n−1
ℓ )⊕

r=1

Hom
U≤0
q
(Lℓ,r, Lℓ−1,k′) and P (r)

ℓ−1,k′ := S
(r)
ℓ−1,k′ ⊕

(n−1
ℓ−1)⊕
k=1

Hom
U≤0
q
(Lℓ−1,k, Lℓ−1,k′)

(51)
with 0 ≤ ℓ − 1 ≤ n − 2 and 1 ≤ k′ ≤

(
n−1
ℓ−1

)
. For ℓ − 1 = n − 1 one defines Pn−1,1 :=

Hom
U≤0
q
(Ln−1,1, Ln−1,1).

7. EQUIVALENCE BETWEEN THE PRESENTATIONS AND CONSEQUENCES770

The main aim of this section is to prove the following crucial result.

Theorem 7.1. The loop Hecke algebra LHn (Definition 1.2) and the algebra L̃Hn (Defini-
tion 1.4) are isomorphic under the following change of coefficients:

(1) when we localize at t, t± 1:

LHn ⊗Z[t] Z[t±1]

[
1

t± 1

]
∼= L̃Hn ⊗Z Z[t±1]

[
1

t± 1

]
,

(2) when we specialize at t = 0:775

LHn ⊗Z[t] Z ∼= L̃Hn,

where Z is viewed as a Z[t]-algebra with t acting as 0.
In both cases, the isomorphism is explicitly given by the following mutually inverse maps:{

Di 7→ (σi − ρi)/(1− t)

Ui 7→ (σi − tρi)/(1− t)
⇆

{
σi 7→ Ui − tDi

ρi 7→ Ui −Di

.

Corollary 7.2. Let k be a field and t̃ ∈ k with t̃ ̸= ±1. We view k as a Z[t]-algebra via the map
t 7→ t̃. Then the algebras LHn ⊗Z[t] k and L̃Hn ⊗Z k are isomorphic.

Combining with Theorem 2.1 and Theorem 3.1, we get:780

Corollary 7.3. Under the change of coefficients (1) and (2) as in Theorem 7.1, the loop Hecke
algebra LHn is free of rank 1

2

(
2n
n

)
.

In what follows, whenever we work over a field k as in the corollary above, we write t̃ instead
of t.

As an application we describe in Section 7.2 the quotient of LHn by the two-sided ideal
generated by

χ(j+1) := (σ1 − ρ1) · · · (σj − ρj)
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for 1 ≤ j ≤ n. Concretely we obtain that if t ̸= ±1, then (LHn ⊗Z[t] k)/(χ(j)) ∼= k which785

disproves [12, Conjecture 6.4]. However as a by-product this yields an interesting counit, i.e.
structure of augmented algebra.

Finally, the presentation of the loop Hecke algebra in the generators {ρi, Di} has quite some
similarities with the Hecke-Hopf algebra H(Sn) introduced by Berenstein–Kazhdan [2]. In Sec-
tion 7.3 we show that H(Sn) canonically surjects as an augmented Z-algebra onto L̃Hn, but the790

kernel is not a Hopf ideal. In fact, we check that for small n the loop Hecke algebra is not a Hopf
algebra, raising the question of whether there exists a variant of the Hecke-Hopf algebra for the
loop Hecke algebra.

7.1. Proof that both presentations are equivalent. In this section we prove Theorem 7.1. It
is readily verified that the maps in Theorem 7.1 are each other’s inverses. Hence, it remains to795

prove that the maps are well-defined.
Now consider the application

ϕ : LHn|t̸=±1 → L̃Hn|t̸=±1 :

{
σi 7→ Ui − tDi

ρi 7→ Ui −Di

defined in Theorem 7.1. We must show that the image under ϕ of the defining relations in Def-
inition 1.2 imply the defining relations in Definition 1.4, and vice-versa. It is easy to check that
the image of the distant-label quadratic relations (4) imply the distant-label quadratic relations
(11), and vice-versa.800

As in Section 2.1.1, we abuse notation and write

U := Ui and U+ := Ui+1,

and similarly for D, ρ and σ.

Remark 7.4. The relations D+DD+ = D+D and UU+U = U+U in the presentation of LHn

are consequences of the same-label relations and the relations UD+ = 0 and U+D = DU+. One
can see that by simplifying D+U+DD+ (resp. UU+DU ) in two different ways.

7.1.1. A first look at the relations. The image under ϕ of the same-label relations (5) and (6) in805

the σ’s and ρ’s is:

(U − tD − 1)(U − tD + t) = 0, (U −D)2 − 1 = 0,

(U −D − 1)(U − tD + t) = 0 (U − tD − 1)(U −D + 1) = 0.

When t− 1 is invertible, these relations are equivalent to the same-label relations in the U ’s and
D’s (7). Indeed, if we write q1, q2, q3 and q4 the left-hand side of these relations, we have that:

1

(t− 1)2
(q2 − q4 − q3 + q1) = D2 −D,

1

t− 1
(q3 − q1) = DU − tD2 + tD and

1

t− 1
(q2 − q3) = UD −D2 − U + 1,

which concludes using q2.
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On the other hand, the braid relations in the ρ’s and σ’s (2) and (3) give:

(U − aD)(U+ − bD+)(U − bD) = (U+ − bD+)(U − bD)(U+ − aD+),

where (a, b) = (1, 1), (1, t), (t, 1) or (t, t). Expending gives the family of relations:

r(a,b) := UU+U − U+UU+

− a(DU+U − U+UD+)

− b(UD+U + UU+D − U+DU+ −D+UU+)

+ ab(DD+U +DU+D − U+DD+ −D+UD+)

+ b2(UD+D −D+DU+)

− ab2(DD+D −D+DD+)

Here we say “the relation r(a,b)” to refer to the relation r(a,b) = 0. One checks that the defining810

relations of L̃Hn imply the above (family of) relation(s). It remains to show that this (family
of) relation(s), together with the same-label relations, implies the remaining defining relations of
L̃Hn.

We have two cases: (1) the case when t is invertible (Section 7.1.2) and (2) the case t = 0
(Section 7.1.3).815

7.1.2. Case (1).

Step 1. We compute the following relation, simplifying with the same-label relations:

s1 :=
1

(t− 1)2

[
(t3r(1,1) − t2r(1,t) − t r(t,1) + r(t,t)) U

− (t3r(1,1) − t2r(1,t) − t2r(t,1) + tr(t,t)) D

+ U+ (t3r(1,1) − t r(1,t) − t2r(t,1) + r(t,t))

− D+ (t3r(1,1) − t r(1,t) − t3r(t,1) + tr(t,t))

− (t− 1) ( t r(1,t) − r(t,t))
]

= tUD+U − tDU+U − t2D+UD+ + t2D+DU+.

This gives a new relation between words of length three.
Recall that by assumption of the case at hand, t is invertible. We compute the following, again

using the same-label relations to simplify:

s2 :=
−1

t2(t− 1)
(D+s1 + s1U − s1) = D+UD+ −D+DU+.

This gives a relation between two words of length three.

Step 2. We derive further relations from s1 and s2. Multiplying s2 on the right with U+ gives

D+UD+ = D+DU+ = 0.

Combining with s1 gives UD+U = DU+U , using the assumption t invertible. Multiplying this820

relation on the left by D gives
UD+U = DU+U = 0.
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In turn, we can derive further relations from the relation above by multiplying on the left and
on right in such a way that the pattern UD (or U+D+) appears, and simplifying with the relevant
same-label relation. This gives:

U+UD+ = UD+, D+DD+ = D+D, U+DU+ = DU+

and U+DD+ = U+D +DD+ −D.

UD+D = UD+, UU+U = U+U, DU+D = DU+

and UU+D = UU+ + U+D − U+.

Step 3. Using UD+U = 0, UD+D = UD+, UU+D = UU++U+D−U+ and U+DU+ = DU+

from Step 2, we compute:

s3 :=
1

(t+ 1)(t− 1)2
U
[
tr(1,1) − tr(1,t) − r(t,1) + r(t,t)

]
= U+D −DU+.

This gives the relation825

U+D = DU+.

Step 4. Using the relations D+UD+ = 0 and D+UU+ = 0 from Step 2 and the relation U+D =
DU+ from Step 3, we compute:

s4 :=
1

(t+ 1)(t− 1)2

[
t2r(1,1) − r(1,t) − t2r(t,1) + r(t,t)

]
D+ = −UD+.

This gives the relation
UD+ = 0.

Step 5. Using the relations UU+U = U+U from Step 2, the relation U+D = DU+ from Step 3
and the relation UD+ = 0 from Step 4, we compute:

s5 :=
1

(t− 1)2

[
t2r(1,1) − tr(1,t) − tr(t,1) + r(t,t)

]
D+ = U+U − U+UU+

This gives the relation
U+UU+ = U+U.

Furthermore, using the relation D+DD+ = D+D from Step 2, the relation U+D = DU+ from
Step 3 and the relation UD+ = 0 from Step 4, we compute:

s6 :=
1

(t− 1)2

[
tr(1,1) − r(1,t) − tr(t,1) + r(t,t)

]
D+ = −t(DD+D −D+D).

Under the assumption t invertible, this gives

DD+D = D+D.

Step 6. Using the relations DD+D = D+DD+ and UU+U = U+UU+ following from Step 2
and Step 5, the relation U+D = DU+ from Step 3, and the relation UD+ = 0 from Step 4, we
see that that the first, second, fifth and sixth summands in r(a,b) are zero. Moreover, using again
U+D = DU+ and UD+ = 0:

r(t,1) = tDD+U +D+UU+ − tDD+ − UU+ + tD + U+.



38 G. JANSSENS, A. LACABANNE, L. SCHELSTRAETE AND P. VAZ

We compute, using the assumptions that t + 1 and t are invertible and the quadratic relations
found in previous steps:

s7 := − 1

t(t+ 1)

[
r(t,1)U+ − tDr(t,1) − U+r(t,1) + (t+ 1)Ur(t,1)

]
= D+U −D+ − U + 1.

This gives the last relation D+U = D+ + U − 1, which concludes the proof in the case t ̸= 0.

7.1.3. Case (2). When t = 0, the relations r(a,b) reduce as follows:

v1 := r(t,t) = UU+U − U+UU+

v2 := r(t,t) − r(1,t) = DU+U − U+UD+

v3 := r(t,t) − r(t,1) = UD+U + UU+D − U+DU+ −D+UU+

+ UD+D −D+DU+

v4 := r(1,1) + r(1,t) + r(t,1) − r(t,t) = DD+U +DU+D − U+DD+ −D+UD+

+ UD+D −D+DU+ −DD+D +D+DD+

Step 1. We compute:

s1 := U+v3 + v1D + v2U + U+v2D + v3U + v3D +D+v1D +D+v2D − v1 − 2v3

= DU+U − U+DU+ +DU+ − UD+.

This gives a relation between words of length at most three.830

Step 2. We compute:

s2 := Ds1U+ − s1U+ −Ds1 + s1 = −UD+.

This gives the relation

UD+ = 0.

Step 3. With the relation from Step 2, we have that v2 = DU+U . Multiplying by U on the left
gives UU+U − U+U . Together with v1, it gives the relations

UU+U = U+UU+ = U+U.

Step 4. It follows from Step 3 that UU+D = U+D+UU+−U+, computing (UU+U −U+U)D.
With this and Step 2, v3 simplifies as:

v3 = −U+DU+ −D+UU+ −D+DU+ + U+D + UU+ − U+

Computing U+v3 − v3 − Uv3 leads to the relation

DU+ = U+D.

Note that thanks to Remark 7.4, it also follows that D+DD+ = D+D.835
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Step 5. With the relation DU+ = U+D from Step 4, v3 further simplifies as:

v3 = −D+UU+ + UU+ − U+

Using UD+ = 0, computing v3D+ − v3 leads to the relation

D+U = D+ + U − 1.

Step 6. Using the relations found in previous steps, the relation v4 simplifies as follows:

v4 = −DD+D +D+D.

This gives the remaining relation DD+D = D+D, and concludes.

7.2. The structure as augmented algebra. The aim of this section is to describe the quotient
of LHn by the two-sided ideal generated by

χ(j+1) := (σ1 − ρ1) · · · (σj − ρj)

for 1 ≤ j ≤ n. If one assumes that t ̸= ±1, then via Theorem 7.1 this is equivalent to describing
the quotient of L̃Hn by the element D1 · · ·Dj. It is the latter that we do in this section:

Proposition 7.5. The map

πn : L̃Hn → Z :

{
Ui 7→ 1
Di 7→ 0

is a Z-algebra morphism with ker(πn) = (D1 · · ·Dj) for any 1 ≤ j ≤ n.840

Proof. Using a direct verification it is easily verified that πn is well-defined, i.e. that the defining
relations in Definition 1.4 of L̃Hn are satisfied under πn.

Note that ker(πn) = (D1, . . . , Dn) as the quotient map L̃Hn ↠ L̃Hn/(D1, . . . , Dn) maps Ui

to 1 by the relation UiDi = Ui + Di − 1, see (7). Therefore, this quotient map agrees with πn
and it remains to prove that (D1, . . . , Dn) = (D1. · · · .Dj) for any 1 ≤ j ≤ n. Equivalently, we845

prove that Di ≡ 0 in L̃Hn/(D1 · · ·Dj) for any 1 ≤ i ≤ n− 1.
We will use ≡ to emphasize that we are working with the quotient L̃Hn/(D1 · · ·Dj). As

0 ≡ D1 · · ·Dj , also U1D1 · · ·Dm ≡ 0 for j ≤ m. Consequently, if m > 1 and using the
relations for U1D1 and U1D2:

U1D2︸ ︷︷ ︸
=0

D3 · · ·Dm +D1 · · ·Dm︸ ︷︷ ︸
=0

−D2 · · ·Dm ≡ 0.

Thus we obtained that D2 · · ·Dm ≡ 0. Continuing iteratively, we obtain that Dm ≡ 0 and hence
Dj ≡ · · · ≡ Dn ≡ 0.

For the variables Di with i < j we consider Di · · ·DjUj−1 ≡ 0. For that word, the defining
relation (8) yields

Di · · ·Dj︸ ︷︷ ︸
=0

+Di · · ·Dj−2Dj−1Uj−1︸ ︷︷ ︸
=0

−Di · · ·Dj−1 ≡ 0.

This time, continuing iteratively with Di · · ·Dj−1 ≡ 0, we obtain that Di ≡ 0, as desired. □
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Remark 7.6. In [12, Conjecture 6.4] it was conjectured that the quotient would be non-trivial for850

j ̸= 1 and that furthermore the values dim ejLHn/(χ
(j+1))ei, with the ej a system of orthogonal

idempotents of Hn/(χ
(j+1)) adding up to the identity, would be given by the j × j-truncation of

the matrix in Corollary 6.3. Although Proposition 7.5 shows wrong, it would be interesting to
know if there exist some quotients of the loop Hecke algebra that yield those truncations.

7.3. Comparison with the Hecke-Hopf algebra. In [2] the Hecke-Hopf algebra H(Sn) was855

introduced. This Hopf Z-algebra [2, Theorem 1.3] has the interesting property that the classical
Hecke algebra embeds in it [2, Theorem 1.9]: Hq(Sn) ↪→ H(Sn) ⊗Z Z[q, q−1]. The algebra is
defined as follows.

Definition 7.7. Let n ≥ 2. The Hecke-Hopf algebra, denoted H(Sn), is the Z-algebra generated
by si and Di for i = 1, . . . , n− 1 and subject to the following relations:860

• s2i = 1, siDi +Disi = si − 1, D2
i = Di for 1 ≤ i ≤ n− 1,

• sjsi = sisj , Djsi = siDj , DjDi = DiDj for |i− j| > 1,
• sjsisj = sisjsi, Disjsi = sjsiDj , DjsiDj = siDjDi+DiDjsi+siDjsi for |i−j| = 1.

Note that, when t − 1 is invertible, the presentation of the loop Hecke algebra LHn in the
generators {ρi, Di :=

(σi−ρi)
1−t

} has quite some similarities with the Hopf-Hecke algebra. Using865

the presentation obtained via Theorem 7.1 we will rather compare with L̃Hn which is also a
Z-algebra.

Proposition 7.8. Let n ≥ 2. Then the map

ψn : H(Sn) → L̃Hn :

{
si 7→ Ui −Di

Di 7→ Di

is an epimorphism of augmented Z-algebras. However, ker(ψn) is not a Hopf ideal of H(Sn).

Remark 7.9. Unfortunately, as ker(ψn) is not a Hopf ideal, the Hopf structure of the Hecke-870

Hopf algebra cannot be transported to the loop Hecke algebra. In fact for n = 2, 3, 4 the loop
Hecke algebra is not a Hopf algebra.

Indeed, in those cases dimk(L̃Hn ⊗Z[t] k) =
(
2n−1
n

)
= 3, 10 and 35 when n = 2, 3 and 4

respectively. For these dimensions it is known that all Hopf algebras over an algebraically closed
field k of characteristic 0 are semisimple, see [26, 25]. However, it follows from the combination875

of Theorem 5.7 and Theorem 6.1 that the loop Hecke algebra is not semisimple.

Thus it seems that the loop Hecke algebra shares with the Hecke algebra the fact of not being
a Hopf algebra. Hence it is reasonable to ask the following.

Question 1. Does there exist a “loop Hecke-Hopf algebra”, i.e. a Hopf algebra in which the loop
Hecke algebra canonically embeds?880

We now proceed to the proof.

Proof of Proposition 7.8. By construction ψn will be an epimorphism of Z-algebras if it is well-
defined. That it is one of augmented algebras means that ϵH(Sn) = πn ◦ ψn where ϵH(Sn) is the
counit H(Sn) and πn is defined in Proposition 7.5. Recall that by definition ϵH(Sn)(si) = 1 and
ϵH(Sn)(Di) = 0 and so we indeed see that ψn commutes with the augmentation.885
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Next, we verify the well-definedness.
The relations ψn(s

2
i ) = 1 and ψn(siDi +Disi) = ψn(si − 1) follow via a direct computation

using the same-label relations (7).
The relations for |i− j| > 1 follow from the interchange relations (11).
The relation ψn(sjsisj) = ψn(sisjsi) follows from direct computation, analogous to how the890

relation ρiρi+1ρi = ρi+1ρiρi+1 in LHn (see (2)) followed from relations in L̃Hn in the proof of
Theorem 7.1. Using quadratic relations (7) and (8) and considering the cases j = i±1 separately,
the relation ψn(Disjsi) = ψn(sjsiDj) reduces to:

−DiUi+1 −DiDi+1 +Di +DiDi+1Di = −DiUi+1 −DiDi+1 +Di +Di+1DiDi+1

and UiUi+1 − Ui+1 +Di+1DiDi+1 = UiUi+1 +DiUi+1 − Ui+1 −DiUi+1 +DiDi+1Di.

Both hold thanks to DiDi+1Di = Di+1DiDi+1. Finally, we check the relation ψn(DjsiDj) =
ψn(siDjDi + DiDjsi + siDjsi). On the one hand ψn(DjsiDj) = DjUiDj − DjDiDj , and on895

the other hand a direct computation gives

ψn(siDjDi +DiDjsi + siDjsi) = UiDjUi −DiDjDi.

Considering the cases j = i± 1 separately, it is a direct computation that UiDjUi = DjUiDj .

Finally, we prove that ker(ψn) is not a Hopf-ideal. Note that Disi +Di ∈ ker(ψn). To show
that ker(ψn) is not a Hopf ideal it suffices to show that12 S((si +Di)Di+1) /∈ ker(ψn). To do so,
recall that the antipode is defined by S(si) = si and S(Di) = −siDi. Hence900

S((si +Di)Di+1) = si(1−Di)Di+1.

Now, using (7) we find:

Ψn(si(1−Di)Di+1) = (Ui −Di)(1−Di)Di+1 = UiDi+1 − UiDiDi+1 = −DiDi+1 +Di+1.

The latter is non-zero as the monomials are L̃Hn-reduced words and hence linearly independent
by Theorem 2.1. □

APPENDIX A. CONFLUENCE OF CRITICAL BRANCHINGS

In this appendix, we finish the proof of Theorem 2.1 by showing that the higher linear rewriting
system described in Figure 1 (see Figure 2 for the diagrammatic notation) critically confluate.905

We enumerate critical branchings by first considering critical branchings involving a same-
label rewriting step (Section A.1), and then all the remaining critical branchings (Section A.2).

A.1. Same-label rewriting steps and others.

12Alternatively one can verify that it is not a coideal, hence ker(ψn) is also not a bialgebra ideal.
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A.1.1. Same-label rewriting steps and same-label rewriting steps. We consider branchings whose
branches are of type one of the same-label rewriting steps:910

The first four branchings are straightforward. The last four come down to the fact that

U · (U +D − 1)
∗→R UD and D · (U +D − 1)

∗→R 0,

and vice-versa for the multiplication on the right.

A.1.2. DD → . . . and others. We consider branchings with one branch of type DD → . . . and
the other branch of type one of the distinct-label or additional rewriting steps:

Their confluence is relatively straightforward. The confluence of the third branching comes down915

to the fact that
D+(D+ + U − 1)

∗→R D+ + U − 1.

A.1.3. DU → . . . and others. We consider branchings with one branch of type DU → . . . and
the other branch of type one of the distinct-label or additional rewriting steps:

Since DU → . . . rewrites to zero, it suffices to check that the other branch rewrites to zero.
Confluence of the first (resp. second) branching uses the first (resp. second) additional rewrit-920

ing step. The same holds for the sixth and seventh branchings.
Confluence of the third and fourth branchings is immediate, as the other branch rewrites to

zero.
Confluence of the fifth and eighth branchings is straightforward.

A.1.4. UU → . . . and others. We consider branchings with one branch of type UU → . . . and925

the other branch of type one of the distinct-label or additional rewriting steps:
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Their confluence is relatively straightforward and similar to Section A.1.2. The confluence of the
third branching comes down to the fact that

(D+ + U − 1)U
∗→R D+ + U − 1.

A.1.5. UD → . . . and others. We consider branchings with one branch of type UD → . . . and
the other branch of type one of the distinct-label rewriting steps:930

The confluence of the first branching is given below:

+ −

+ −

+ −

The confluence of the second branching is similar.
The confluence of the third branching is given below:

+ −

0

The confluence of the fourth branching is given below:

+ − + −

+ −

+ −
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The confluence of the fifth and sixth branchings is obtained similarly.935

Next, we consider branchings with one branch of type UD → . . . and the other branch of type
one of the additional rewriting steps:

The other branch always rewrite to zero. We leave it to the reader to check that the branch
UD → . . . also rewrites to zero.

A.2. Distinct-label rewriting steps and others.940

A.2.1. U+D → . . . and others. This was done in Section 2.3.

A.2.2. UD+ → . . . and others. We find the following list of critical branchings with the re-
maining distinct-label rewriting steps:

? ?
?

?

The branch UD+ → . . . rewrites into zero: to show confluence, we must check that the other
branch rewrites to zero. For the first branching, we have:945

? → ? + ? − ? → ? − ? → 0

The last step requires a case by case analysis, depending on whether ? is , or . The
second branching is analogous. A similar case by case analysis is necessary for the fourth and
sixth branchings. Note that confluence of the fourth branching in the case ? = requires one
the additional rewriting step, and similarly for the sixth branching in the case ? = . The
remaining branchings are straightforward.950

Since both UD+ → . . . and the additional rewriting steps rewrite to zero, any branching be-
tween them is automatically confluent; hence we don’t bother classifying these critical branch-
ings.
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A.2.3. D+U → . . . and others. We consider branchings involving a branch of type D+U → . . .
and branch of type one of the remaining distinct-label rewriting steps.955

?

?

We compute the D+U → . . . branch of the first three branchings:

→ + − → + −

?
→

?

+
?

−
?

→
?

→ + − → + −

One checks that this confluates with the other branch. The last three branchings are analogous.

We find the following list of critical branchings with the additional rewriting steps:

One checks that both branches rewrite to zero.

A.2.4. Three-term rewriting steps and others. We consider branchings involving one the three-960

term rewriting steps in the set of distinct-label rewriting steps. First, consider the case where both
branches are of this type. The situation is symmetric in the D’s and U ’s, so we only consider
branchings in D’s:

? ?
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Consider the first branching. If ? = , we can use the rewriting step U+D → DU+ to slide
this U out of the diagram, and we recover the case ? = . Moreover, the last branching rewrites965

into zero when ? = , irrespective of the branch.
When ? = , the first and last branchings rewrite into D++D+D, irrespective of the

branch. The same holds for the fourth branching.
The fifth branching rewrites into D+DD++D+, irrespective of the branch.
Finally, when ? = , the first and last branchings rewrite into D+D, irrespective of the970

branch. The same holds for the second and third branchings.

Consider then branchings where one branch is a three-term rewriting step and the other branch-
ing is one the additional rewriting steps:

? ?

? ? ? ?

? ?

Since additional rewriting steps rewrite to zero, it suffices to check that the other branch rewrites
to zero. This is straightforward for branchings in the first row, as the additional rewriting step975

can still be applied after applying the three-term rewriting step. The same is true for branchings
in the third row.

Consider the first branching of the second row. The case ? = rewrites to zero, and when
? = or ? = , we can rewrite until an additional rewriting step can be applied. Similar

arguments apply to the remaining branchings in the second row.980

A.2.5. additional rewriting steps and additional rewriting steps. Both branches rewrite to zero,
so any such branching is trivially confluent.
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VAIN, CHEMIN DU CYCLOTRON 2, 1348 LOUVAIN-LA-NEUVE, BELGIUM
& DEPARTMENT OF MATHEMATICS AND DATA SCIENCE, VRIJE UNIVERSITEIT BRUSSEL, PLEINLAAN 2, 1050
ELSENE, GEOFFREYJANSSENS.GITHUB.IO, ORCID 0000-0001-5540-3171

Email address: geoffrey.janssens@uclouvain.be1085
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L.S.: MAX PLANCK INSTITÜT FÜR MATHEMATIK, VIVATSGASSE 7, 53111 BONN, GERMANY,1090
LEO-SCHELSTRAETE.GITHUB.IO, ORCID 0000-0001-7167-3964

Email address: leoschelstraete@gmail.com
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